
Symmetric LDPC codes are not necessarily locally testable

Eli Ben-Sasson∗ Ghid Maatouk† Amir Shpilka‡ Madhu Sudan§

December 15, 2010

Abstract

Locally testable codes, i.e., codes where membership in the code is testable with a constant
number of queries, have played a central role in complexity theory. It is well known that a code
must be a “low-density parity check” (LDPC) code for it to be locally testable, but few LDPC
codes are known to the locally testable, and even fewer classes of LDPC codes are known not to
be locally testable. Indeed, most previous examples of codes that are not locally testable were
also not LDPC. The only exception was in the work of Ben-Sasson et al. [2005] who showed that
random LDPC codes are not locally testable. Random codes lack “structure” and in particular
“symmetries” motivating the possibility that “symmetric LDPC” codes are locally testable, a
question raised in the work of Alon et al. [2005]. If true such a result would capture many of
the basic ingredients of known locally testable codes.

In this work we rule out such a possibility by giving a highly symmetric (“2-transitive”)
family of LDPC codes that are not testable with constant number of queries. We do so by
continuing the exploration of “affine-invariant codes” — codes where the coordinates of the
words are associated with a finite field, and the code is invariant under affine transformations
of the field. New to our study is the use of fields that have many subfields, and showing that
such a setting allows sufficient richness to provide new obstacles to local testability, even in the
presence of structure and symmetry.

Keywords: Property testing, Invariance, Error-correcting codes

∗Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel, eli@cs.technion.ac.il.
The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number 240258 and from the US-Israel Binational Science
Foundation under grant number 2006104.
†School of Computer and Communications Sciences, EPFL, Switzerland, ghid.maatouk@epfl.ch. Part of this

work was conducted while the author was an intern at Microsoft Research. It is supported in part by Grant 228021-
ECCSciEng of the European Research Council.
‡Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel and Microsoft Research,

Cambridge, MA, shpilka@cs.technion.ac.il. This research was partially supported by the Israel Science Founda-
tion (grant number 339/10).
§Microsoft Research New England, Cambridge, Massachusetts, USA, madhu@mit.edu.

0

1 Introduction

An error-correcting code C ⊆ FN2 is said to be locally testable if membership in the code is verifiable
with a constant number of queries (independent ofN). (Many of the terms introduced in this section
will be defined more formally in later sections.) The existence of locally testable codes (LTCs),
especially with good rate and distance, is a surprising phenomenon. Their discovery (and utility so
far) is closely tied to the discovery of probabilistically checkable proofs, and the performance of the
two have also been closely related. (The first systematic study of such codes occurred in [Goldreich
and Sudan, 2006], though such codes were defined informally as far back as in [Babai et al., 1991],
and significantly investigated in recent years.)

While many, simple and complex, constructions of locally testable codes are known, less seems
to be known about what makes codes locally testable. There are few general “necessary” or
“sufficient” conditions known. It is known that very sparse linear codes [Kaufman and Litsyn,
2005, Kaufman and Sudan, 2007] and a certain subfamily of “symmetric” codes [Kaufman and
Sudan, 2008, Kaufman and Lovett, 2010] are locally testable. At the same time, there are few
“counterexamples” to several tempting conjectures about what makes a code testable. Our result
in this work considers two very natural “conditions” for sufficiency, and rules out their conjunction
as being a sufficient condition for local testability. To describe these two conditions we need to
explain the basic context.

Linear Codes and Duals: Throughout this work, we are interested in binary linear codes.
Specifically, letting F2 denote the field of two elements, a code C ⊆ FN2 is said to be linear if it
is a subspace of FN2 . A natural method to test linear codes is via their “duals”. For x, y ∈ FN2 ,
let xi, yi denote the ith coordinates of x and y respectively, and let 〈x, y〉 =

∑n
i=1 xiyi denote the

standard inner product of x and y. Then, the dual of C, denoted C⊥, is the collection of vectors
{y ∈ FN2 |〈x, y〉 = 0}. (Note that C⊥ is also a linear code, with (C⊥)⊥ = C.)

Every y ∈ C⊥ denotes a potential “test” for membership in C and a vector w passes the y-test if
〈w, y〉 = 0. Since such a test only needs to query w on the support of y (the set {i ∈ {1, . . . , N}|yi 6=
0}), this can be a “local” test if y has small support. Furthermore, as shown by Ben-Sasson et al.
[2005], a tester for membership in C can be converted into one that picks y ∈ C⊥ according to some
distribution and applies the y-test (without qualitative change in parameters, and in particular,
without any increase in the query complexity).

Low-Density Parity Check (LDPC) Codes: The connection between tests for membership
in C and the dual of C, leads to a natural necessary condition for a code C to have a k local
tester (a tester making at most k queries). Specifically, C⊥ must have low “weight” codewords,
i.e., codewords of support size at most k. Furthermore, if the test rejects every non-codeword with
positive probability, then it must be the case that C⊥ is spanned linearly by codewords of weight at
most k. Codes that have the property that their duals are spanned by their low-weight codewords
are the very popular and well-studied family of LDPC codes.1

A natural question about LDPC codes is whether every LDPC code is also locally testable. This
question was answered negatively by Ben-Sasson, Harsha, and Raskhodnikova [2005] who showed
that random LDPC codes (with appropriate parameters) are not locally testable.

1The usual description of LDPC codes is via a low density “parity check” matrix H such that xH = 0 for every
x ∈ C. To relate this to our description one should take the columns of H to be a maximal-size set of linearly
independent elements of C⊥ of weight at most k.

1

Codes with Symmetries: One informal interpretation of the negative result of [Ben-Sasson
et al., 2005] is that random codes offer very little “structure” and testability ought to be hard in
the absence of “structure”.

One way to formalize such a statement could be via the symmetries of the code. Given a code
C ⊆ FN2 and a permutation π : {1, . . . , N} → {1, . . . , N}, let C ◦ π denote the set {x ◦ π =
〈xπ(1), . . . , xπ(N)〉|x ∈ C}. Given a code C ⊆ FN2 , let G(C) be its automorphism group, i.e., G(C) is
the set of permutations π : {1, . . . , n} → {1, . . . , n} such that C is invariant under π, i.e., C = C ◦π.
For a random code C ⊆ Fn2 (of appropriately large size) the automorphism group is likely to be
trivial, i.e., contain only the identity permutation. Perhaps codes with non-trivial automorphism
groups are testable?

This question was raised explicitly by Alon et al. [2005] who asked if every code C with a “2-
transitive” automorphism group, and a low-weight codeword in the dual (the above-mentioned
necessary condition), is locally-testable. (G(C) acting on {1, . . . , N} is t-transitive if for every
two sequences i1, . . . , it and j1, . . . , jt of distinct elements of {1, . . . , N}, there is a permutation
π ∈ G(C) with π(i`) = j` for every ` ∈ {1, . . . , t}.) 2-transitivity implies a high level of redundancy
in the low-weight codewords of C⊥. Indeed the presence of even a single word of weight at most
k in C⊥ implies the presence of Ω(N2) such words (by the transitivity, since every permutation
preserves the weight of words) and gives a code that is locally decodable and locally correctable.
Such a highly redundant set of low-weight words in the dual seems to suggest that they should
span the dual, and furthermore suffice for testing C (under some appropriately chosen distribution).
Unfortunately, even the first of these hopes turn out to be not true, as shown by Grigorescu et al.
[2008]. They give an example of a family of 2-transitive codes which have a low-weight codeword
in the dual, but are not spanned by low-weight codewords (and so are not LDPC codes).

Our Results: This work is motivated by a less ambitious interpretation of the question raised by
Alon et al.: Specifically we consider the question as to whether symmetries in an LDPC code lead
to local testability. Boosting the hope for such a question is the fact that any 2-transitive LDPC
code is a locally decodable (even self-correctible) code. Thus to conjecture testability is tempting.
However, we give a negative answer to this question. Specifically we show the following theorem:

Theorem 1.1. There exists an infinite family of 2-transitive LDPC codes which is not testable
with a constant number of queries. Specifically, there exists a constant c and an infinite family of
LDPC codes {CN ⊆ FN2 } where each C⊥N is spanned by its codewords of weight at most c, such that
for every k, for sufficiently large N , CN is not k-locally testable.

Prior to our work, the only result showing some LDPC codes are not locally testable, were those
of [Ben-Sasson et al., 2005], who show random (and thus far from symmetric) codes are not locally
testable. Thus, our results give the first “structured” family of LDPC codes that are not locally
testable.

We also note that in the broader context of symmetries in property testing (beyond linear codes),
our example gives a more symmetric property than previously known ones that is not testable.
The only previous work, due to Goldreich and Kaufman [2010], gives a 1-transitive (non-linear)
property that is not locally testable.

Affine-Invariance: We derive our counterexample codes by looking into the class of “affine-
invariant” codes. This is a well-studied family of codes in the literature on coding theory. Its

2

study in the context of local testability was initiated by Kaufman and Sudan [2008] and the codes
considered in the above mentioned work of Grigorescu et al. [2008] come from this family of codes.

The coordinates of a binary affine-invariant code C ⊆ FN2 are associated with a finite field F2n (so
N = 2n), and the code is invariant under every permutation πα,β : F2n → F2n , πα,β(x) = αx + β,
where α ∈ F2n \ {0} and β ∈ F2n . (Note that in the work of Kaufman and Sudan [2008] they also
consider seemingly broader classes, where the coordinates form a vector space over some field, but
every such code will also be affine-invariant in our sense.)

Affine-invariant codes give explicit families of highly symmetric codes, and provide enough variety
to both give “broad” positive results, and counterexamples to even “broader” conjectures. For
example, Kaufman and Sudan consider codes with the “single-orbit” property, namely that the
dual is spanned by the “orbit” of a single low-weight codeword. (The “orbit” of a word w ∈ FN2
is simply all words w ◦ π, where π is an affine permutation.) They show that every code with the
single orbit property is locally testable, by the natural test.

Indeed their work motivated the following hope: that every affine-invariant LDPC code may have
the single-orbit property and thus be testable. (Of course, the family from Theorem 2.6, does not
have such a single-orbit property.) Previous works attempting to rule out testability for affine-
invariant codes have only been able to set forth some conditions under which the codes do not have
low-weight codewords in the dual at all [Ben-Sasson and Sudan, 2010], or these do not span the
dual [Grigorescu et al., 2008]. Thus to analyze codes whose duals are spanned by their low-weight
words, but do not have the single-orbit property, leads to new technical challenges, and, we hope,
to new insights about the class of affine-invariant codes.

High-level view of our codes: The main idea behind our construction itself uses some of the
rich theory already developed for affine-invariant codes. Our basic idea is to construct several
affine-invariant LDPC codes C1, . . . , C` ⊆ FN2 , where N = 2n and consider C = ∩i∈{1,...,`}Ci. Since
the intersection preserves both affine-invariance and the LDPC property, C ends up also being an
affine-invariant LDPC code. The key is to select Ci’s so that the intersection is not locally testable,
or at least does not have the single-orbit feature, even though Ci’s individually do. (Note that
all previously known affine-invariant LDPC codes did satisfy the single-orbit feature.) Below we
attempt to describe how we select the Ci’s.

Our first task is to ensure that the Ci’s are LDPC codes. Unfortunately the “explicit” ones we
know (based on low-degree multivariate polynomials) turn out not easy to analyze. So we turn
to a less explicit, but more general result due to Grigorescu et al. [2009] (see also [Kaufman and
Lovett, 2010]) which claims that any “sparse” affine-invariant code is a single-orbit code (hence an
LDPC code). “Sparseness” simply fixes the number of codewords to be some polynomial in N .
Unfortunately taking Ci to be a sparse code is futile since C, being a subset of Ci will be even more
sparse and the above mentioned results would imply that C also has the single-orbit feature. This
is where we turn to a special class of integers n. We only consider n that are a product of small
primes. We pick p1, . . . , p` to be distinct primes with pi = Θ(log n) and ` = O(log n/ log logn) so
that n = p1 · p2 · · · p`. We take C̃i to be some sparse code contained in F2pi

2 where we view the
coordinates of this code to be F2pi ⊆ F2n . Since C̃i is sparse, it is a single-orbit code over the
smaller domain. We then propose a certain “lifting” of this code to the code Ci over the domain
F2n which preserves the single-orbit property while making the code non-sparse. The resulting code
C = ∩iCi now at least has some hope of being non-sparse and even of not being testable.

3

Proving that a code is not testable is non-trivial. We do so by considering the “canonical tester”
proposed by Ben-Sasson et al. [2005] which tests a vector w by picking a low-weight codeword
y ∈ C⊥ and accepts w if and only if 〈y, w〉 = 0. Our main technical result involves showing that
for a careful choice of C̃i’s a codeword of weight k tends to accept some words far from C with
probability at least 1 − k/` (and so the testing complexity is Ω(`) = Ω(log logN/ log log logN).
To explain the actual choice of the C̃i’s we need to explain a fair bit of the (known) structural
results about affine-invariant codes, so we won’t do it now. But it suffices to say that the choice,
understanding the “lifts” of these codes, and finally proving the limitation of local tests on C are
the main contributions of this work.

Organization: In Section 2 we present some basic definitions and a formal statement of our main
result (Theorem 2.6 which is a more formal version of Theorem 1.1). In Section 3 we present some
standard background related to affine-invariant codes. In Section 4 we present our new class of
codes and prove our main theorem modulo some technical results. We start with a simple proof
that our codes are indeed LDPC codes, in Section 5. In Section 6 we show that our codes do not
possess a sufficient condition for local testability. The machinery allows us to prove in Section 7
that our codes are not locally testable.

2 Formal definitions and statement of results

Notation and basic coding theory definitions: Let [n] denote the set {1, . . . , n}. The letters
F,K,L will invariably denote finite fields and Fq is the field of size q. For functions f : X → Y
and g : Y → Z (for arbitrary sets X,Y, Z), we let g ◦ f : X → Z denote their composition, i.e.,
(g ◦ f)(x) = g(f(x)). We use the standard notation for error correcting codes as defined in, e.g.,
MacWilliams and Sloane [1978]. For finite alphabet Σ and integers n, k, d, a (n, k, d)Σ code C is a
subset of Σn of size |C| ≥ |Σ|k such that the minimal Hamming distance between distinct codewords
w, u ∈ C is at least d. For the special case that Σ is a finite field F (as will hold throughout this
paper), an [n, k, d]F-code C is a k-dimensional subspace of Fn such that every nonzero codeword
f ∈ C \ {0} has weight at least d. We shall view a codeword f ∈ C as a function f : [n] → Σ and
define its support to be the set supp(f) = {i ∈ [n] | f(i) 6= 0} and its weight to be the size of its
support. The dual code of C is C⊥ = {u ∈ Fn | u ⊥ C} where u ⊥ V if and only if 〈u, v〉 = 0 for all
v ∈ V . Let C⊥≤q denote the set of dual words that have weight at most q. If (C⊥≤q)⊥ = C we say that
C is a q-low-density-parity-check code (q-LDPC code, for brevity) because it is characterized by a
parity check matrix in which each row has small weight (or low density).

Definition 2.1 (Locally testable code (LTC)). For integer q and constants δ, s, c ∈ [0, 1], a
(q, δ, s, c)-tester for a (n, k, d)Σ code C is a randomized Turing machine T with oracle access to
a purported codeword f : [n]→ Σ that satisfies:

Operation T makes at most q queries to f and outputs either accept or reject. Let T f denote the
output of T on oracle f and notice T f is a random variable because T is a random machine.

Completeness If f ∈ C then Pr[T f = accept] ≥ c.

Soundness If the Hamming distance of f from C is at least δn (in which case we say f is δ-far
from C) then Pr[T f = reject] ≥ s.

4

The probability stated above is with respect to the randomness used by T . The code C is said to be
(q, δ, s, c)-locally testable if there exists a (q, δ, s, c)-tester for it. q is the query complexity, δ the
distance (or proximity) parameter, s is the soundness and c is the completeness of the tester and
its associated code. When c = 1 (as will be the case in this paper) we say the tester and associated
code have perfect completeness and omit the completeness parameter altogether.

Remark 2.2 (On soundness and completeness). Taking soundness and completeness parameters
s + c ≤ 1 leads to trivial results — all codes are testable with such parameters by a tester that
accepts all words with probability c hence rejects all words with probability 1 − c ≥ s. So we shall
always assume s+ c > 1.

The following class of canonical testers is particularly useful for proving lower bounds on linear
LTCs, because the analysis of a canonical tester can be carried out using tools from linear algebra.
In what follows, for f ∈ Fn and I ⊂ [n] let f |I be the projection of f to the set of coordinates I
and for C ⊂ Fn let C|I = {f |I | f ∈ C}.

Definition 2.3 (Linear and canonical testers for a linear code). A linear q-tester for a [n, k, d]F-
linear code C is specified by a distribution µ over subsets {I ⊂ [n] | |I| ≤ q}. Such a tester operates
by sampling I according to µ and accepting if and only if f |I ∈ C|I .

A canonical q-tester for C is specified by a distribution µ over C⊥≤q. It operates by sampling u
according to µ and accepting f if and only if 〈u, f〉 = 0, where 〈u, f〉 =

∑n
i=1 u(i)f(i).

Ben-Sasson et al. [2005] showed that a tester for a linear code can be assumed to be a linear tester
without any loss in parameters. And going from a linear tester to a canonical one results in a
loss in soundness by a factor that depends only on the field size. (See, e.g., [Ben-Sasson et al.,
2009, Section 2] for a discussion of the linear-to-canonical transition.) We summarize this by the
following claim.

Claim 2.4. If C is an [n, k, d]F-code that has a (q, δ, s, c)-tester then C has a (q, δ, (s+ c− 1))(1−
1
|F|), 1)-canonical tester.

2.1 Affine invariant low density parity check (LDPC) codes

We now turn to define affine-invariant codes, focusing on LDPC affine-invariant codes. Before
getting to the definitions we make a shift in our coding-related notation to be in line with the
notation used for describing such codes. In particular, we shall associate the set of coordinates [n]
with the elements of a finite field K (with |K| = n) and view words in Fn as functions mapping K
to F. Letting {K→ F} denote the set of functions from K to F, a code C is now viewed as a linear
subspace of {K→ F}. We define AffineK to denote the set of affine transformations T : K→ K.

Definition 2.5 (Affine-invariant codes). A linear code C ⊆ {K→ F} is said to be affine-invariant
if K extends F (so n = |K| = |F|t for some integer t) and C is “invariant” under the action of the
affine semi-group. Specifically, for every f ∈ C and every affine-transformation T ∈ AffineK we
have (f ◦ T) ∈ C where (f ◦ T)(α) = f(T (α)) for all α ∈ K.

We are ready to state our main result whose proof appears in Section 4.

5

Theorem 2.6 (Affine-invariant LDPC codes are not necessarily locally testable). For every prime
p there exist constants δ, γ > 0, a positive integer k and an infinite family of positive integers N
such that for every n ∈ N the following holds:

Code There is an affine-invariant code C(n) ⊆ {Fpn → Fp}. I.e., C(n) is a code of block length
N = pn over Fp.

LDPC C(n) is a k-LDPC code.

Non-testable C(n) is not o(log n/ log logn)-locally testable. Specifically, for every s, c ∈ (0, 1] sat-
isfying s+c > 1, every (q(n), δ, s, c)-tester for C(n) satisfies q(n) ≥ γ(s+c−1)) log n/ log logn.

Remark 2.7. Note that as a function of the block length N = pn, the locality lower bound is
Ω(log logN/ log log logN).

3 Basic Background

To describe our codes, we need to reintroduce some basic notions used in previous works on testing
affine-invariant properties, specifically, the notion of a “single-orbit characterization”, the “degree-
set” of an affine-invariant family, and the “sparsity” of a family. Readers familiar with the works
of [Kaufman and Sudan, 2008, 2007, Grigorescu et al., 2008, 2009, Ben-Sasson and Sudan, 2010,
Kaufman and Lovett, 2010] can skip most of this section after familiarizing themselves with our
notation. We restrict our attention to functions mapping K = Fpn to F = Fp.

3.1 Single-orbit Characterization

A basic concept in testing is the notion of a constraint, namely a sequence of points α1, . . . , αk ∈ K
and a subset S ⊂ Fk. A function f satisfies the constraint if 〈f(α1), . . . , f(αk)〉 ∈ S. We refer to
k as the locality of the constraint. In this work we need to work only with basic constraints where
the set S is given by a single linear constraint on the values (i.e., S is a co-dimension one subspace
of Fk). Thus a basic constraint is given by a pair (α, λ) ∈ Kk × Fk, where f satisfies the constraint
if
∑k

i=1 λif(αi) = 0. We suppress the term basic (all constraints considered in this work are basic)
and simply refer to (α, λ) as a k-constraint. Note that such a constraint is equivalent to a dual
codeword of weight k.

A code C ⊆ {K→ F} satisfies a constraint if every f ∈ C satisfies it. A collection of constraints{
(α(j), λ(j))

}
j∈[m]

characterizes a code C if C is exactly the set of functions that satisfy every

constraint (α(j), λ(j)), j ∈ [m]. Note that being a k-LDPC code is equivalent to being characterized
by a collection of k-constraints.

The notion of interest to us is a single-orbit characterization, which arises when the characterization
is simply the permutations of a single constraint under affine transformations of the domain, as
formalized below.

Definition 3.1 (Single-orbit characterization). A k-constraint (α, λ) is said to be a k-single orbit
characterization, or simply a k-s-o-c, of an affine-invariant code C ⊆ {K→ F} if the following
holds: f ∈ C if and only if f satisfies the constraints (T ◦ α, λ) for every T ∈ AffineK, where
T ◦ α = 〈T (α1), . . . , T (αk)〉. If C has a k-s-o-c we say C is k-single-orbit.

6

The following result of Kaufman and Sudan [2008] shows that all affine-invariant codes that have
a k-s-o-c are necessarily k-locally testable.

Theorem 3.2 (k-single-orbit codes are locally testable, [Kaufman and Sudan, 2008, Theorem
2.10]). There exists s > 0 such that for every positive integer k, prime p, field K extending Fp, and
every δ > 0 the following holds: If C ⊆ {K→ Fp} is a k-single-orbit affine-invariant code then C is
a (k, δ, sδ/k2, 1)-locally testable code.

All previously known affine-invariant k-locally testable codes were actually k-single-orbit. Since all
previously known affine-invariant LDPCs were also locally testable, it follows that all previously
studied LDPCs were actually single-orbit codes. Not surprisingly, single-orbit codes also form the
starting points of our construction. Our goal is to come up with codes and transformations which
preserve affine-invariance and the LDPC feature, while losing the single-orbit and local testability
properties.

3.2 Degree sets of affine-invariant codes

To pick our basic (single-orbit) affine-invariant codes, we use a certain representation in terms of
the “degrees” of the polynomials that represent codewords — a property studied previously in
Kaufman and Sudan [2008] and subsequent works. We review the main notions below.

For a function f : K→ Fp we let f(X) ∈ K[X] denote the unique univariate polynomial over K of

degree at most |K| − 1 that computes f . In what follows let suppdeg

(∑
i≥0 fiX

i
)

= {d | fd 6= 0}
denote the set of powers of f(X) with nonzero coefficients. We use the Trace map from K to Fp
defined by TraceK→Fp(X) =

∑[K:Fp]−1
i=0 Xpi . (In the future we shall omit K and Fp when they are

unambiguously defined.)

Definition 3.3 (Degree sets). Given a code C ⊆ {K→ F} we let Deg(C) = ∪f∈C suppdeg(f) be
its degree set. Conversely, given a set D ⊆ {0, . . . , |K| − 1}, let Code(D) = {Trace ◦ f |f ∈
K[X], suppdeg(f) ⊆ D}, denote the code of D.

For general codes, the notions above do not carry much relevance, however for affine-invariant
codes they do. To summarize the effect we need to study the members of degree sets in their base-p
representation. The following definitions become important to us.

Definition 3.4 (Shadow- and orbit- closed degree sets). For prime p and integer d let [d]p denote
the base-p representation of d, i.e., [d]p = 〈d0, d1, . . .〉 such that d =

∑
i≥0 dip

i. The p-weight of d
is wtp(d) =

∑
i≥0 di. Let the p-shadow of d be the set of integers whose base-p representation is,

coordinate-wise, not greater than the base-p representation of d,

shadowp(d) =

∑
i≥0

eip
i

∣∣∣∣∣∣ ∀i, ei ≤ di
.

We write e ≤p d to denote e ∈ shadowp(d) and e <p d denotes e ∈ shadowp(d) \ {d}.
A set of integers D is said to be p-shadow closed if for all d ∈ D we have shadowp(d) ⊆ D. When
K is a degree-n extension of Fp we let orbitK(D) =

{
d · pi mod pn − 1

∣∣ d ∈ D, i ∈ {0, . . . , n− 1}
}

denote the orbit of D in K. A set D is said to be K-orbit closed if orbitK(D) = D.

7

The connection between shadow- and orbit-closed degree sets and affine-invariant codes is given by
the following result which is implicit in many different works. For completeness we give its proof
in Section 8.

Lemma 3.5 (Closed degree sets specify affine-invariant codes). Let C ⊆ {K→ F} be affine-
invariant. Then Deg(C) is shadow-closed and orbit-closed and C = Code(Deg(C)). Conversely,
for every shadow-closed and orbit-closed family D, the code Code(D) is affine-invariant and satis-
fies D = Deg(Code(D)).

Our codes will be constructed by choosing the degree set carefully, and then analyzing algebraic
conditions that explain when they have single-orbit characterizations. The following lemma, proved
in Section 9, expresses the notions of being a constraint and a single-orbit characterization, in terms
of degree sets.

Lemma 3.6 (Degrees vs. Constraints and Characterizations). Let C ⊆ {K→ F} be an affine-
invariant code with degree set D = Deg(C). Let (α, λ) ∈ Kk × Fk be a k-constraint. We have the
following.

1. C satisfies (α, λ) if and only if
∑k

i=1 λiα
d
i = 0 for every d ∈ D.

2. (α, λ) is a k-s-o-c of C if and only if we have: d ∈ D(C) ⇔ ∀e ≤p d,
∑k

i=1 λiα
e
i = 0.

3.3 Sparsity

Finally, we introduce the notion of the “sparsity” of an affine-invariant code. For our purposes, it
is best to define it in terms of its degree set.

For a field L extending F, we say that an affine-invariant code C ⊆ {L→ F} has sparsity s if there
exists a set2 S with |S| ≤ s such that C = Code(S). It is easy to show that an s-sparse code has
at most |L|s codewords. Such codes are interesting in that they are single-orbit characterized, as
shown in [Grigorescu et al., 2009, Theorem 4] for the case when F = F2 and L is a prime-degree
extension of F, and by [Kaufman and Lovett, 2010, Theorem 1.7] for the general case.

Theorem 3.7 (Sparse affine-invariant codes have good distance and are single-orbit). For every
prime p and constant s there exists a constant δ > 0 and integer k such that the following holds.
Let L be the degree m extension of Fp. Let C ⊆ {L→ Fp} be an affine-invariant code of sparsity at
most s. Then

1. C is a code of relative distance at least δ.

2. C is characterized by a single constraint of size at most k.

2Note that one does not have to use sets that are orbit-closed for this definition. Indeed Code(S) equals
Code(orbitL(S)) due to the nature of the Trace function but using S directly may lead to much smaller sparsity.

8

4 The Construction

In this section we describe the construction of our affine-invariant LDPC codes which are not
locally testable. At the end of the section we state the main technical result regarding these codes
(Theorem 4.7) and conclude Theorem 2.6 which is the main result of this paper. The proof of
Theorem 4.7 is deferred to later sections.

Recall from Section 1 that we consider n = p1 ·p2 · · · p` where the pi’s are distinct primes with each
pi ≈ log n and ` = Θ(log n/ log logn). This yields a field K with many subfields in it. The plan is
to construct several codes C̃i, one corresponding to each i ∈ [`] and then “lift” them into codes Ci
and letting C = ∩iCi. We now go into the details of C̃i and the “lifting”.

Let Li = Fppi . We pick C̃i to be an s-sparse, affine-invariant code mapping Li to F. By Theorem 3.7
such a code is k-single-orbit, so we cannot hope it is not testable. We then define a lifting operation
which lifts this code to a code Ci ⊆ {K→ F}. The lifting loses sparsity (as it must for our final
result) but does not lose the k-single-orbit property (which also it needs to lose). (We only wish
to preserve the LDPC property; the preservation of the single-orbit property is collateral damage.)
But the single-orbit property is not necessarily preserved when we take the intersections of the Ci,
and indeed forms the basis of our hope that ∩iCi is not single-orbit or locally-testable. In later
sections we prove that these features are not preserved confirming our hope, but for now we define
the “lifting” operation and then describe our codes.

Formally, we define lifting in terms of what it does to the degree sets of affine-invariant codes. But
to get some intuition, the idea, given a sequence of nested fields F ⊂ L ⊂ K, is to take a constraint
(α, λ) and then to just view it as a constraint on codes mapping K to F. If (α, λ) is a k-s-o-c of
some code C̃ ⊆ {L→ F} when viewed as a constraint on codes mapping L to F, and a k-s-o-c of C
when viewed as a constraint on codes mapping K to F, then we define C to be the “lift” of C̃.

Definition 4.1 (Lifted code). Let K) L) Fp be finite fields. For D ⊆ {0, . . . , |L| − 1} we define
the lift of D from L to K to be the set of integers

liftL↗K(D) =
{
d′ ∈ {0, . . . , |K| − 1}

∣∣ (shadowp(d
′) mod (|L| − 1)

)
⊆ D

}
.

For an affine-invariant code C ⊆ {L→ Fp} with degree set D, let liftL↗K(C) be the affine-invariant
code specified by degree set liftL↗K(D),

liftL↗K(C) = {f : K→ Fp | suppdeg(f) ⊆ liftL↗K(D)} = Code(liftL↗K(D).

Remark 4.2 (Lifted affine-invariant code is affine-invariant). If C is an affine-invariant code,
characterized by degree set D, notice that lifting C to a larger field results in an affine-invariant
code. This is because the set liftL↗K(D) is, by definition, p-shadow-closed (assuming D is p-shadow-
closed) and inspection reveals it is orbit closed because |L| divides |K|.

Next we define our family of non-LTCs.

Definition 4.3 (Main Construction). Fix a prime field Fp. Given distinct primes p1, . . . , p` let

Li be the degree pi extension of Fp and let K be the degree n =
∏`
i=1 pi extension of Fp. Let

Di = orbitLi({1, 2, 1 + p}) and let C̃i be the affine-invariant code with degree set Di, i.e.,

C̃i = {TraceLi→F(f) | f ∈ Li[X], suppdeg(f) ⊆ Di} = Code(Di).

9

Let Ci = liftLi↗K(C̃i). Finally we let C = C(Fp; p1, . . . , p`) ⊆ {K→ Fp} be the affine-invariant code
defined as

C =
⋂̀
i=1

Ci.

In other words, C(Fp; p1, . . . , p`) = Code(D) where D = D(Fp; p1, . . . , p`) =
⋂`
i=1 liftLi↗K(Di).

Remark 4.4 (Basic Properties). Every affine-invariant code of dimension greater than one contains
every degree of p-weight one in its degree set, and so does D(Fp; p1, . . . , p`) (since it must contain
some degree of weight one, and then the Trace operator adds every degree of weight one into the
degree set). This obvious fact will be used often later.

Remark 4.5 (Sparsity of lifted code). Notice each “base-code” C̃i ⊆ {Li → Fp} has sparsity at
most 3. (It can be verified to be isomorphic to a subcode of Reed-Muller code of degree 2 over Fp,
cf. [Ben-Sasson and Sudan, 2010, Lemma 3.7].) However, the lifted code liftLi↗K(Ci) has super-

constant sparsity. To see this notice that
{
p+ pjpi

∣∣∣ j = 0, . . . , npi − 1
}
⊆ liftLi↗K(Di) and each

element of this set has a distinct orbit in K, which implies that the sparsity of liftLi↗K(Di) is at
least [K : Li] = n/pi.

The following two statements immediately prove our main Theorem 2.6. The first statement,
proved in Section 5, follows directly from what is already known about affine-invariant codes but
the second one, proved in Section 7, requires some new ideas which are exposed in Sections 6 and
7.

Lemma 4.6 (C(Fp; p1, . . . , p`) is an LDPC code). For every prime p there exists a positive constant
k such that the following holds. C(Fp; p1, . . . , p`) is an affine-invariant k-LDPC code.

Theorem 4.7 (C(Fp; p1, . . . , p`) is not locally testable). For every prime p there exist positive
constant δ such that the following holds for all s, c ∈ (0, 1] such that s + c > 1 (cf. Remark 2.2).
Given a (q, δ, s, c)-tester for C(Fp; p1, . . . , p`) (as in Definition 4.3) and assuming p1, . . . , p` ≥ 5, we
have q > (s+ c− 1)(1− 1/p)`.

Let us see how these statements imply our main result.

Proof of Theorem 2.6. Let pi denote the (i + 2)nd smallest prime (such that p1 = 5). Let n` =∏`
i=1 pi and recall that

` ≥ Ω(log n`/ log log n`). (1)

This inequality can be derived from the prime number theorem. Consider the family of affine-
invariant codes

{Cn`
= C(Fp; p1, . . . , p`) | ` = 1, 2, . . .}.

Lemma 4.6 proves the first part of Theorem 2.6. For the second part let δ be as in Theorem 4.7.
Given a (q`, s, c)-tester for Cn`

Theorem 4.7 shows that

q` ≥ (s+ c− 1)(1− 1/p)` ≥ Ω(log n`/ log log n`)

where the last inequality uses (1). Letting γ′ be the constant hidden inside the asymptotic notation
of (1) and setting γ = γ′(1− 1/p) completes the proof of Theorem 2.6.

10

5 C(Fp; p1, . . . , p`) is an LDPC code

In this section we prove Lemma 4.6, the simpler of the two statements needed to prove Theorem 2.6.
It will follow directly from Theorem 3.7.

Lemma 5.1 (Lifting a single-orbit code results in a single-orbit code). If (α, λ) ∈ Lk × Fk is a
k-s-o-c of C ⊆ {L→ Fp} then (α, λ) is also a k-s-o-c of liftL↗K(C).

Proof. By Lemma 3.6 it is enough to show that for all d′ ∈ {0, . . . , |K| − 1},

d′ ∈ liftL↗K(D) if and only if ∀e ≤p d′,
k∑
j=1

λjα
e
j = 0. (2)

By Definition 4.1 the left hand side of (2) holds if and only if (shadowp(d
′) mod |L| − 1) ⊆ D. The

exponent e appearing in the right hand side of (2) can be replaced by e mod |L|−1 because αi ∈ L.
So to prove our lemma it suffices to show

(
shadowp(d

′) mod |L| − 1
)
⊆ D ⇔ ∀e ≤p d′,

k∑
j=1

λjα
e mod (|L|−1)
j = 0 (3)

For the forward implication (⇒) notice that every e ∈ shadowp(d
′) satisfies (e mod (|L| − 1)) ∈ D

so the right hand side of (3) follows from Lemma 3.6. For the reverse implication (⇐) we need the
following claim, proved below.

Claim 5.2. If e ∈ (shadowp(d
′) mod (|L|−1)) and f ∈ shadowp(e

′), then there exists f ′ ≤p d′ such
that f = f ′ mod (|L| − 1)).

This claim shows that the right hand side of (3) holds for shadowp(e mod (|L|−1)) and this implies
via Lemma 3.6 that (e mod (|L| − 1)) ∈ D. Since this holds for all e ≤p d′ we conclude that the
left hand side of (3) holds as well and this completes the proof of the lemma.

Proof of Claim 5.2. Suppose [K : Fp] = n. For integer e < |K| let S(e) ⊆ {0, . . . , n− 1} be
the unique multiset satisfying e =

∑
s∈S(e) p

s and for a multiset S ⊆ {0, . . . , n− 1} let d(S) =∑
s∈S p

s. Assuming e′ ∈ shadowp(d
′) is an integer such that e = e′ mod (|L| − 1) and letting

S(e) = {s1, . . . , sm} notice S(e′) can be partitioned into m multisets S1, . . . , Sm such that

S(e) = {S(d(Si) mod (|L| − 1)) | i = 1, . . . ,m}.

Supposing without loss of generality S(f) = {s1, . . . , sm′} for m′ ≤ m the integer f ′ = d(∪m′i=1Si)
belongs to shadowp(d

′) and has the property that f ′ mod |L|−1 equals f . This proves the claim.

We now show that C(Fp; p1, . . . , p`) is an LDPC code.

Proof of Lemma 4.6. We have

C̃i = Code(orbitLi({1, 2, 1 + p}) = Code({1, 2, 1 + p}) = Code({0, 1, 2, p, 1 + p})

11

and so this code has sparsity at most 5. We can thus apply Part 2 of Theorem 3.7 to conclude C̃i is
characterized by a constraint of size k for some constant k independent of pi. Lemma 5.1 implies
that Ci = liftLi↗K(C̃i) is characterized by the same constraint of size k. In particular, we get that
both C̃i and Ci are k-LDPC codes. Since the interserction of k-LDPC codes is also k-LDPC codes,
we conclude that C(Fp; p1, . . . , p`) = ∩iCi is also a k-LDPC code.

6 C(Fp; p1, . . . , p`) is not (`− 1)-single orbit characterizable

This section sets up machinery needed for the proof of Theorem 4.7 which shows that our code C is
not locally testable. In the process we prove the strictly weaker statement (Lemma 6.1) that C is
not single-orbit characterized. Along the way we introduce the concepts and tools needed to prove
Theorem 4.7 in the next section.

Lemma 6.1. Let p be an arbitrary prime and let p1, . . . , p` ≥ 5. Then, if C(Fp; p1, . . . , p`) from
Definition 4.3 has a k-s-o-c, then k > `.

We prove the lemma at the end of this section, after developing the ingredients. The proof con-
sists of two main steps. First, we analyze the degree set D(Fp; p1, . . . , p`) of our codes and show
some explicit integers that are contained in this set and some integers that are not. Proving the
containments (or lack thereof) is easy — but the choice of these integers is done carefully so as to
support the second step. In particular, we show that the elements of focus in D(Fp; p1, . . . , p`) have
a certain recursive description which turns out to be useful in the second step.

The second step is to use the analysis of D(Fp; p1, . . . , p`) to prove that C(Fp; p1, . . . , p`) does not
have a local characterization. For this part, we consider any k-local constraint (α, λ) ∈ Kk × Fkp
satisfied by all codewords in C(Fp; p1, . . . , p`). We use Lemma 3.6 to convert this into an implication
that a certain matrix M with k columns has a non-empty kernel. We then define a sequence of `
matrices M1, . . . ,M` = M with nested kernels, i.e.,

ker(M1) ⊇ ker(M2) ⊇ . . . ⊇ ker(M`). (4)

The crux of our proof is to show that if ker(Mi) = ker(Mi+1) then the constraint somehow “misses”
testing membership in Ci, and so it is not a characterization. This step relies on the recursive
description of the members of D(Fp; p1, . . . , p`) spotlighted in the first. We turn this recursive
description into a simple relationship between Mi and Mi−1 and then, in turn, into a relationship
between their kernels.

6.1 Analysis of D(Fp; p1, . . . , p`)

Definition 6.2. For j ∈ [`] let qj be the integer satisfying

∀i ∈ [`], qj mod pi =

{
1 if i = j

0 otherwise.

(The Chinese Remainder Theorem guarantees the existence of qj.)

12

For t ∈ [`] let Yt be the set of integers

Yt =
{
p
∑t

j=1 zjqj
∣∣∣ zj ∈ {0, 1}} =

{
{1, pq1} t = 1

Yt−1 ∪ {pqt · d | d ∈ Yt−1} t = 2, . . . , `
(5)

Notice that the Yt’s have a nice recursive structure, which will become important in later sections.
Our next lemma explains the relationship between the Yt’s and D(Fp; p1, . . . , p`).

Lemma 6.3. 1. For every e ∈ Y` and e′ ≤p 1 + e we have e′ ∈ D(Fp; p1, . . . , p`).

2. For all t ∈ [`], we have 1 + p2qt 6∈ D(Fp; p1, . . . , p`), assuming p1, . . . , p` ≥ 5.

Proof. For Part (1), fix e ∈ Y`. Let z1, . . . , z` ∈ {0, 1} be such that e = p
∑

j zjqj . Let d = 1 + e.

Notice d is of p-weight 2. Hence all integers d′ <p d are of p-weight 1. Since D(Fp; p1, . . . , p`) is
nonempty and p-shadow-closed it follows that d′ ∈ D(Fp; p1, . . . , p`). So to prove the claim it is

enough to show d ∈ D(Fp; p1, . . . , p`). Recalling D(Fp; p1, . . . , p`) =
⋂`
i=1 liftLi↗K(Di) it is enough

to show that d ∈ liftLi↗K(Di) for all i ∈ [`]. Since Di = orbitLi({1, 2, 1 + p}) this amounts to
showing that

d mod (ppi − 1) ∈ Di ∀i ∈ [`].

By construction of qj we have

pqj mod (ppi − 1) =

{
p if i = j

1 otherwise,

so that

d mod (ppi − 1) = 1 +
∏
j

pzjqj mod (ppi − 1)

= 1 + pziqi mod (ppi − 1) =

{
2 mod p if zi = 0

1 + p z1 = 1

In both cases we have d mod (ppi − 1) ∈ Di. Since this holds for all i ∈ [`] this yields Part (1) of
the lemma.

For Part (2), it is enough to prove that 1+p2qt mod (ppt − 1) 6∈ Dt. (RecallDt = orbitLt({1, 2, 1 + p}).)
Noting that pqt mod (ppt − 1) = p, we get that

1 + p2qt mod (ppt − 1) = p2 + 1 mod (ppt − 1) = p2 + 1.

The only way 1+p2 ∈ Dt is if 1+p2 = pa(1+p) mod (ppt − 1) for some a, but inspection reveals this
can not happen if pt ≥ 5. (It may happen if pt = 3.) We conclude that 1 + p2qt 6∈ D(Fp; p1, . . . , p`)
as claimed.

13

6.2 Analyzing constraints on C(Fp; p1, . . . , p`)

We now fix a k-local constraint (α, λ) ∈ Kk×Fk and consider a collection of matrices whose kernels
turn out to hold the key to proving Lemma 6.1.

The natural matrix to consider at this stage might be the matrix M̃ whose rows are indexed by
d ∈ D(Fp; p1, . . . , p`) and columns by i ∈ [k] and where M̃d,i = λi · αdi . The columns of this matrix
sum to zero, implying the all ones vector is in its (right) kernel. Unfortunately this matrix does
not have a nice enough structure to exploit, so we focus instead on a matrix whose entries are
roughly αd−1

i (we consider only d’s of the form suggested by Lemma 6.3). In fact we define an
entire sequence of matrices that are used to show the recursive structure of the final matrix that
we care about.

We start with some generic notation. For any set S of non-negative integers, we let M [S] be the
|S| × k matrix with M [S]i,j = λj ·αij for i ∈ S and j ∈ [k]. For an m× k matrix, M , we let ker(M)

denote the set of vectors {x ∈ Kk|Mx = 0}. We let M↑t denote the matrix with (M↑t)ij = (Mij)
t.

Definition 6.4. For t ∈ [`], let Yt be as in Definition 6.2. Then Mt = M [Yt].

Our interest in Mt’s stems from the fact that if (α, λ) is a constraint satisfied by C(Fp; p1, . . . , p`),
then M` must have a non-empty kernel as pointed in the following lemma.

Lemma 6.5. α ∈ ker(Mt) for all t ∈ [`].

Proof. Fix e ∈ Yt and note that (Mtα)e =
∑k

i=1 λiα
1+e
i . By Part (1) of Lemma 6.3, we have

1 + e ∈ D(Fp; p1, . . . , p`), and by Part (1) of Lemma 3.6 we have that
∑k

i=1 λiα
d
i = 0 for every

d ∈ D(Fp; p1, . . . , p`). We conclude that every coordinate of the vector Mtα is zero, and thus
α ∈ ker(Mt).

We now turn to upper bounding the dimension of the kernel of Mt. For this we need the following
recursive description of Mt and its kernel.

Proposition 6.6 (Basic properties of M1, . . . ,M`). For t = 2, . . . , ` we have

Mt =

(
Mt−1

M↑p
qt

t−1

)
. (6)

Consequently,

ker(Mt) = ker(Mt−1) ∩ ker
(
M↑p

qt

t−1

)
. (7)

Proof. Follows directly from inspecting the rightmost side of (5) and noticing λp
qt = λ because

λ ∈ Fkp.

We are now ready to use the structure described above to study the kernels of the matrices Mt.

Lemma 6.7 (Kernel decay). For every t ∈ {2, . . . , `}, ker(Mt−1) ⊇ ker(Mt). Furthermore, if

ker(Mt−1) = ker(Mt) then ker(Mt−1) = ker
(
M↑p

mqt

t−1

)
for all positive integers m.

14

Proof. The containment ker(Mt−1) ⊇ ker(Mt) is immediate from Proposition 6.6.

We prove the second part by induction on m ≥ 1. The base case (m = 1) follows from (7) because
the assumption ker(Mt) = ker(Mt−1) implies

ker(Mt−1) = ker
(
M↑p

qt

t−1

)
. (8)

For the induction step use the inductive hypothesis to assume

M↑p
mqt

t−1 v = 0 ⇔ Mt−1v = 0.

The operation of raising elements of K to power pqt is a (Frobenius) automorphism of K since K is
an extension of Fp. Raising both sides to this power we get

0 =
(
M↑p

mqt

t−1 v
)↑pqt

= M↑p
(m+1)qt

t−1 v↑p
qt ⇔ 0 = (Mt−1v)↑p

qt
= M↑p

qt

t−1 v
↑pqt .

Letting u = v↑p
qt and noticing the mapping v 7→ u is one-to-one (because raising to power pqt is

invertible) we conclude

u ∈ ker(M↑p
(m+1)qt

t−1) ⇔ u ∈ ker(M↑p
qt

t−1)⇔ u ∈ ker(Mt−1).

The rightmost implication follows from the assumption (8). This completes the proof of the lemma.

6.3 Proof of Lemma 6.1

We are now ready to prove the main lemma of this section.

Proof of Lemma 6.1. First we claim that for every t ∈ {2, . . . , `}, it is the case that ker(Mt))
ker(Mt−1). Assume for the sake of contradiction that this does not hold and ker(Mt−1) = ker(Mt)
for some t. Then by Lemma 6.5 we have α ∈ ker(Mt−1). Combining with Lemma 6.7 we further get

α ∈ ker
(
M↑p

mqt

t−1

)
for all m ≥ 1. Setting m = 2 we get α ∈ ker

(
(Mt−1)↑p

2qt
)

. Now, since 1 = p0 ∈

Yt−1 (cf. Definition 6.2), we get that (λ1α1, . . . , λkαk) is a row of Mt−1 and so (λ1α1, . . . , λkαk)
↑p2qt

is a row of (Mt−1)↑p
2qt . The condition α ∈ ker

(
(Mt−1)↑p

2qt
)

yields:

0 =

k∑
i=1

λp
2qt

i · αp
2qt

i · αi =

k∑
i=1

k∑
i=1

λiα
1+p2qt
i .

We claim that this shows that d = 1 + p2qt belongs to D(Fp; p1, . . . , p`) and this contradicts Part
(2) of Lemma 6.3. Indeed, the p-weight of d is 2 hence all e <p d have p-weight 1 so they belong to
D(Fp; p1, . . . , p`) (see Remark 4.4). So we have

k∑
i=1

λiα
1+p2qt
i = 0,∀e ≤p d

15

which, by Part (2) of Lemma 3.6, implies that d ∈ D(Fp; p1, . . . , p`), contradiction. We conclude
that ker(Mt−1)) ker(Mt) as claimed.

To complete the proof we bound k. By Lemma 6.5 we have dim(ker(M`)) ≥ 1 because α is nonzero.
Since dim(ker(Mt−1)) ≥ dim(ker(Mt)) + 1 for every t, we get that dim(M1) ≥ `. But on the other
hand, we trivially have dim(ker(M1)) < k because M1 is nonzero. Thus we get ` < k as desired.

7 Non-testability

In this section we prove our main theorem, Theorem 4.7. We follow the strategy for proving lower
bounds on query complexity of linear codes suggested by Ben-Sasson et al. [2005], this strategy
is summarized by the following proposition (which we describe in our notation). The strategy is
defined with respect to canonical testers (cf. Definition 2.3) but given Claim 2.4 it also implies
lower bounds for general testers. For µ a distribution over a set S let s ∼ µ denote that s is sampled
according to µ.

Proposition 7.1 (Strategy for proving lower bounds on query complexity, [Ben-Sasson et al.,
2005]). Let C ⊆ {K→ F} be a linear code and let ε, δ > 0. If there exists a distribution µ supported
on {K→ F} satisfying:

Distance: The support of µ is on words that are δ-far from C.

Undetectability: For every k-local constraint (α, λ) satisfied by C,

Pr
w∼µ

[
k∑
i=1

λiw(αi) 6= 0

]
< ε. (9)

Then any (q, δ, ε)-canonical tester for C satisfies q > k.

To follow the strategy we first define the distribution µ of “bad” words for a q-tester, then focus on
an arbitrary k-local constraint satisfied by C and bound the probability of (9) using the machinery
from the previous section.

Definition 7.2 (Bad distribution). Given C(Fp; p1, . . . , p`) and i ∈ [`] let Bi ⊆ {K→ Fp} be the
affine-invariant code Bi = Code(Di) where

Di = orbitK
(
shadowp

({
1 + p2qi

}))
.

Let µ be the distribution obtained by (i) sampling i ∈ [`] uniformly and then (ii) sampling f ∈
Bi \ C(Fp; p1, . . . , p`) uniformly at random.

Claim 7.3 (µ has the distance property). µ is well-defined, i.e., its support is over a nonempty
set. Furthermore, for every prime p there exists a constant δ > 0 such that µ is supported on words
that are δ-far from C(Fp; p1, . . . , p`).

16

Proof. To see the first part of the claim notice Part (2) of Lemma 6.3 says that 1 + p2qi 6∈
D(Fp; p1, . . . , p`) and this implies Bi 6⊆ C(Fp; p1, . . . , p`). So Bi \ C(Fp; p1, . . . , p`) 6= ∅ and we
see that µ is well-defined.

Moving on to the second part, by construction Bi is affine-invariant and has sparsity at most
|shadowp(

{
1 + p2qi

}
)| = |{0, 1, p2qi , 1 + p2qi}| = 4. The distance of Bi is thus implied by the first

part of Theorem 3.7. In particular, each w ∈ Bi \ C(Fp; p1, . . . , p`) is δ-far from C(Fp; p1, . . . , p`)
where δ is the constant guaranteed by Theorem 3.7.

Lemma 7.4 (µ is undetectable). For any k-local constraint (α = (α1, . . . , αk) ∈ Kk, λ = (λ1, . . . , λk) ∈
Fkp) satisfied by C(Fp; p1, . . . , p`) we have

Pr
f∼µ

[f does not satisfy (α, λ)] <
k − 1

`
. (10)

Proof. Let Mt = M [Yt] be as given in Definition 6.4 and recall that ker(Mt−1) ⊇ ker(Mt) for
t = 2, . . . , `. Let T ⊂ {2, . . . , `} be the set of indices t satisfying

ker(Mt−1)) ker(Mt)

and notice |T | < k−1 because dim(ker(M1)) < k and dim(ker(M`)) ≥ 1 (the last inequality follows
from Part (1) of Lemma 6.3). We claim that for each t 6∈ T we have

∑k
j=1 λjα

dt
j = 0, where

dt = 1 + p2qt . Indeed, by Lemma 6.7, for t 6∈ T we have ker(Mt−1) = ker
(

(Mt−1)↑p
2qt
)
. As in the

proof of Lemma 6.1 this implies that α ∈ ker
(

(Mt−1)↑p
2qt
)

, or, equivalently
∑k

i=1 λiα
1+p2qt
i = 0 as

claimed.

Next we claim that for i 6∈ T , the code Bi satisfies (α, λ). To show this it suffices to show, by
Part (1) of Lemma 3.6, that every d ∈ Di = Deg(Bi) satisfies

∑k
j=1 λjα

d
j = 0. If d is of p-weight

one, then d ∈ D(Fp; p1, . . . , p`) (by Remark 4.4) and since C(Fp; p1, . . . , p`) satisfies (α, λ) we have∑k
j=1 λjα

d
j = 0. Else, d = pa · di for some integer a (since these are the only elements in Di of

weight 2) and in this case also we have
∑k

j=1 λjα
d
j =

(∑k
j=1 λjα

di
j

)pa
= 0. We conclude that every

Bi satisfies the k-constraint (α, λ).

We are almost done. Recall that f ∼ µ is chosen by picking i ∈ [`] uniformly and then picking
f ∈ Bi \ C(Fp; p1, . . . , p`). If i 6∈ T , then the constraint (α, λ) is satisfied, and this happens with
probability at least 1− (k − 1)/`. The lemma follows.

We can now complete the proof of Theorem 4.7. Below we use q to denote the locality of tests (as
opposed to k).

Proof of Theorem 4.7. Use the strategy given by Proposition 7.1. Given a prime p let δ > 0 be
the constant guaranteed by Lemma 7.3. This lemma shows that µ is supported on words that
are δ-far from C(Fp; p1, . . . , p`). Fix a q-test for C(Fp; p1, . . . , p`), specified by the constraint (α, λ).
Lemma 7.4 shows that the probability that this constraint rejects words sampled from µ is less than
q/`. So by Proposition 7.1 any canonical q-tester for C(Fp; p1, . . . , p`) rejects words sampled from µ
with probability less than q/`. By Claim 2.4 the existence of a (q, δ, s, c)-tester for C(Fp; p1, . . . , p`)

17

implies the existence of a canonical q-tester with soundness at least (s + c − 1))(1 − 1/p). We
conclude

q/` > (s+ c− 1)(1− 1/p)

and this completes the proof.

8 Closed degree sets specify affine-invariant codes

In this section we prove Lemma 3.5. The claim of the lemma is implicit in several different works
and we basically give the relevant pointers as well as some one line proofs.

Proof. The fact that Deg(C) is shadow closed is proved in [Ben-Sasson and Sudan, 2010, Lemma
3.3] and the fact that C = Code(Deg(C)) is Lemma 4.2 there.

To see that Deg(C) is orbit-closed we note that for a function f(x) =
∑

d fdx
d mapping K→ Fp it

holds that
f(x)p = f(x) (modx|K| − x)

and so fpd = (fd)
p. In particular, fd 6= 0 iff fdp 6= 0. Thus, d ∈ Deg(C) iff dp ∈ Deg(C) and so

Deg(C) is orbit-closed.

In the other direction, recall that

Code(D) = {Trace ◦ f |f ∈ K[X], suppdeg(f) ⊆ D} .

It follows that Deg(Code(D)) is contained in orbit(D) = D. Indeed, if f =
∑

d∈D fdx
d ∈ Code(D)

then

Trace(f) =

[K:Fp]−1∑
i=0

fp
i

=

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pixdp

i

and since D is orbit-closed all the degrees in the RHS are in D and so suppdeg(Trace(f)) ⊆ D.
Containment in the other direction is clear.

Finally, to see that Code(D) is affine-invariant whenD is shadow-closed and orbit-closed, we observe
that for every f =

∑
d∈D fdx

d such that Trace(f) ∈ Code(D), and for every a ∈ K∗ and b ∈ K it
holds that

Trace(f(ax+ b)) =

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pi(ax+ b)dp

i
=

[K:Fp]−1∑
i=0

∑
d∈D

(fd)
pi
∑
e≤pd

xep
i
aep

i
b(d−e)p

i

=
∑
d∈D

∑
e≤pd

[K:Fp]−1∑
i=0

aep
i
b(d−e)p

i
(fd)

pixep
i
.

Since D is shadow-closed and orbit-closed, each degree epi in the sum above is also in D. It follows
that Trace(f(ax + b)) is supported on D and therefore is in Code(D). This proves that Code(D)
is affine-invariant.

18

9 Relating degree sets to constraints and characterizations

In this section we prove Lemma 3.6. The lemma is two-fold, and we start by expressing the fact
that an affine-invariant code satisfies a constraint in terms of a condition on the degree set of the
code.

Lemma 9.1. Let C ⊆ {K→ F} be an affine-invariant code with degree set D = Deg(C). Let
(α, λ) ∈ Kk × Fk be a k-constraint. Then C satisfies (α, λ) if and only if

∑k
i=1 λiα

d
i = 0 for every

d ∈ D.

The proof of the lemma relies on the following “monomial extraction” result, given by [Kaufman
and Sudan, 2008, Lemma 4.2].

Lemma 9.2 (Monomial extraction Kaufman and Sudan [2008]). Let C ⊆ {K→ F} be an affine-
invariant code with degree set D = Deg(C). Then for every d in D, the monomial f(x) = xd belongs
to the code.

Proof of 9.1. Suppose that C satisfies (α, λ), so that f is in C if and only if
∑k

i=1 λif(αi) = 0.
In particular, for any d ∈ D, the monomial f(x) = xd belongs to C by Lemma 9.2 and satisfies∑k

i=1 λiα
d
i = 0

Conversely, suppose that (α, λ) is such that
∑k

i=1 λiα
d
i = 0 for every d ∈ D. Let f(x) =

∑
d∈D fdx

d

be in C. Then
k∑
i=1

λif(αi) =

k∑
i=1

λi
∑
d∈D

fdα
d
i =

∑
d∈D

fd

k∑
i=1

λiα
d
i = 0.

We now relate the existence of a k-s-o-c of C to a necessary condition on the degree set of C.

Lemma 9.3. Let C ⊆ {K→ F} be an affine-invariant code with degree set D = Deg(C). Let
(α, λ) ∈ Kk × Fk be a k-constraint. Then the following holds.
If (α, λ) is a k-s-o-c of C then we have: d ∈ D ⇔ ∀e ≤p d,

∑k
i=1 λiα

e
i = 0.

Proof. Let (α, λ) be a k-s-o-c of C, i.e., f is in C if and only if for all a ∈ K∗, b ∈ K,

k∑
i=1

λif(aαi + b) = 0.

Let d be in D. Then every e ≤p d is also in D (recall that, by Lemma 3.5, D is p-shadow closed)
and is such that Trace(βxe) ∈ C for all β ∈ K∗ (since C = Code(D)). Thus for all a, b and all β,

0 =

k∑
i=1

λiTrace (β(αia+ b)e) = Trace

(
β

k∑
i=1

λi(αia+ b)e

)
.

19

In particular, Trace
(
β
∑k

i=1 λiα
e
i

)
= 0 for every β. But this is true if and only if

∑k
i=1 λiα

e
i = 0.

Conversely, assume that d is such that ∀e ≤p d,
∑k

i=1 λiα
e
i = 0. Noting that

k∑
i=1

λiTrace
(

(αia+ b)d
)

= Trace

∑
e≤pd

(∑
i

λiα
e
i

)
aebd−e

 ,

we see that
∑k

i=1 λiTrace
(
(αia+ b)d

)
= 0 for every a ∈ K∗ and b ∈ K. Hence, Trace(xd) ∈ C and

d ∈ Deg(C) = D.

Finally, we show that the necessary condition in Lemma 9.3 is in fact a sufficient condition for a
code to be single-orbit.

Lemma 9.4. Let C ⊆ {K→ F} be an affine-invariant code with degree set D = Deg(C). Let
(α, λ) ∈ Kk × Fk be a k-constraint. Then the following holds.
If (α, λ) is such that d ∈ D ⇔ ∀e ≤p d,

∑k
i=1 λiα

e
i = 0, then (α, λ) is a k-s-o-c of C.

To prove this lemma, we will need to look at this condition on degree sets of single-orbit codes in
yet another way. The following claim will provide us with the tools to view the condition differently.

Claim 9.5. Let (α, λ) ∈ Kk × Fk and consider an integer d (mod|K| − 1). Then the following are
equivalent.

(i) ∀e ≤p d,
∑k

i=1 λiα
e
i = 0.

(ii)
∑k

i=1 λi(αix+ y)d ≡ 0 as a polynomial in x and y.

Proof. Notice that

k∑
i=1

λi(αix+ y)d =
k∑
i=1

λi
∑
e≤pd

αeix
eyd−e

=
∑
e≤pd

(
k∑
i=1

λiα
e
i

)
xeyd−e.

Since the degree is smaller than the field size, this is a formal equality of polynomials (in the
variables x and y). Hence,

k∑
i=1

λi(αix+ y)d ≡ 0 ⇔
∑
e≤pd

(
k∑
i=1

λiα
e
i

)
xeyd−e ≡ 0 ⇔ ∀e ≤p d,

k∑
i=1

λiα
e
i = 0.

20

Proof of Lemma 9.4. Assume that for all d, d ∈ D ⇔ ∀e ≤p d,
∑k

i=1 λiα
e
i = 0. Equivalently, by

Claim 9.5, we have that

d ∈ D ⇔
k∑
i=1

λi(αix+ y)d ≡ 0.

Let f =
∑

d∈D fdx
d be in C and notice that any d ∈ suppdeg(f) satisfies

∑k
i=1 λi(αia+ b)d = 0 for

any a ∈ K∗ and b ∈ K. Thus for all such a, b,

k∑
i=1

λif(αia+ b) =
∑
d

fd

k∑
i=1

λi(αia+ b)d = 0.

Conversely, suppose f ∈ {K→ F} is such that
∑k

i=1 λif(αia+ b) = 0 for every a ∈ K∗ and b ∈ K.
Define the code C′ as the smallest linear affine-invariant family containing f , that is,

C′ = {
∑
a,b

γabf(xa+ b) | a ∈ K∗, b ∈ K, γab ∈ F}.

For every degree d ∈ suppdeg(f), d is in Deg(C′). As C′ is affine-invariant, every e ≤p d also belongs
to Deg(C′). Hence, for all e ≤p d and all β ∈ K, Trace(βxe) ∈ C′. But notice that any g ∈ C′
satisfies

∑
i λig(αia+ b) = 0 for any a ∈ K∗ and b ∈ K. Thus,

∑
i

λiTrace(β(αia+ b)e) = Trace

(
β
∑
i

λi(αia+ b)e

)
= 0 ∀a, b,

and in particular Trace(β
∑

i λiα
e
i) = 0. But this holds for all β if and only if

∑
i λiα

e
i = 0.

Thus for every degree d ∈ suppdeg(f), it holds that ∀e ≤q d,
∑

i λiα
e
i = 0. Therefore, d ∈ D and

hence f ∈ C.

We now conclude the proof of Lemma 3.6.

Proof of Lemma 3.6. The first claim in the lemma is exactly Lemma 9.1. One direction of the
second claim is given by Lemma 9.3 and the other direction by Lemma 9.4.

References

Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-Muller
codes. IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in poly-
logarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing
(STOC), pages 21–32, 1991.

Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable affine-invariant codes.
Electronic Colloquium on Computational Complexity (ECCC), (108), 2010. URL http://eccc.

hpi-web.de/eccc-reports/2010/TR10-108/index.html.

21

http://eccc.hpi-web.de/eccc-reports/2010/TR10-108/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-108/index.html

Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are hard
to test. SIAM J. on Computing, 35(1):1–21, 2005. URL http://epubs.siam.org/SICOMP/

volume-35/art_44544.html.

Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Sudan, and Michael Viderman.
Locally testable codes require redundant testers. In Proceedings of the 24th Annual IEEE Con-
ference on Computational Complexity (CCC), pages 52–61, 2009.

Oded Goldreich and Tali Kaufman. Proximity oblivious testing and the role of invariances. Elec-
tronic Colloquium on Computational Complexity (ECCC), (058), 2010. URL http://eccc.

hpi-web.de/eccc-reports/2010/TR10-058/index.html.

Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length. J.
ACM, 53(4):558–655, 2006.

Elena Grigorescu, Tali Kaufman, and Madhu Sudan. 2-transitivity is insufficient for local testability.
In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC), pages
259–267, 2008.

Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of codes with appli-
cations to testing. In APPROX-RANDOM, volume 5687 of Lecture Notes in Computer Science,
pages 534–547, 2009.

Tali Kaufman and Simon Litsyn. Almost orthogonal linear codes are locally testable. In FOCS,
pages 317–326. IEEE Computer Society, 2005. ISBN 0-7695-2468-0.

Tali Kaufman and Shachar Lovett. New extension of the weil bound for character sums with
applications to coding. Electronic Colloquium on Computational Complexity (ECCC), (065),
2010. URL http://eccc.hpi-web.de/eccc-reports/2010/TR10-065/index.html.

Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and testable.
In 48th Symposium on Foundations of Computer Science (FOCS), pages 590–600, 2007.

Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 403–412, 2008.

Florence J. MacWilliams and Neil J. A. Sloane. The theory of error-correcting codes. North-Holland
Amsterdam, 1978.

22

http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-058/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-058/index.html
http://eccc.hpi-web.de/eccc-reports/2010/TR10-065/index.html

	Introduction
	Formal definitions and statement of results
	Affine invariant low density parity check (LDPC) codes

	Basic Background
	Single-orbit Characterization
	Degree sets of affine-invariant codes
	Sparsity

	The Construction
	C(Fp;p1,…,p) is an LDPC code
	C(Fp;p1,…,p) is not (-1)-single orbit characterizable
	Analysis of D(Fp;p1,…,p)
	Analyzing constraints on C(Fp;p1,…,p)
	Proof of Lemma 6.1

	Non-testability
	Closed degree sets specify affine-invariant codes
	Relating degree sets to constraints and characterizations

