The P vs. NP problem

Madhu Sudan*

May 17, 2010

Abstract

The resounding success of computers has often led to some common misconceptions about
“computer science” — namely that it is simply a technological endeavor driven by a search
for better physical material and devices that can be used to build smaller, faster, computers.
Without trivializing this important quest, this article would like to highlight the complementary
science behind computing: namely the search for efficient algorithms (or programs or procedures
or software, depending on the readers preference) and the profound implications of this science,
not only to the technology of computing, but almost all other disciplines including mathematics,
physics and other physical sciences, as well as the social sciences including economics, psychology
and indeed, even philosophy!

In this article we will attempt to introduce some of the very basic elements of the theory of
computing starting with elementary examples of computational tasks that everyone is familiar
with. We will then describe Turing’s contributions in the 1930s that led to the development of
both computers and a theory of computers. We will conclude with a description of the more
modern theory of efficient computing from the 1970s leading to the question “Is P = NP?”.
We will explain the question, its significance and the important consequences of its resolution
(depending on how the question is resolved).

1 Introduction

DISCLAIMER: As with all other surveys I have written, this one was finished in a hurry; and as a
result might suffer from a lot of rough edges. Please feel free to email me your comments if you
have any; but please accept my apologies first for any errors, misappropriations and in general lack
of taste and judgement. That said, lets get on with our story ...

The modern story of computing starts well before there was any realistic hope of building a
physical computer, with the work of Alan M. Turing [12] in the 1930s. The idea of calculat-
ing devices, and indeed even some notion of programmable calculating devices had existed even
before. But a key piece of insight was still missing in all of these works. Note that for most
design/engineering tasks, one tends to build a device after the task has been fixed. Indeed one
looks carefully at the task to be solved, and then carefully comes up with a potential solution that
applies in this case. In particular, different tasks require different solutions. Computing, and this
may be considered the heart of the science behind computing, is a radically different discipline in
this regard. One can build/buy a computer today; and program it to solve any computational

*Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142, USA. madhu@microsoft.com.
Eventually it is hoped that some version of this article will appear in some form or other in some publication.



task later. (This may require some minimal augmentation in the form of large secondary storage;
but that is all.) This discovery about computation is the essence of Turing’s contribution to the
science of computing — popular as the “universal computer”. Till Turing’s work came along it was
unclear how powerful any single computing device could be: Would it always be the case that for
every computer one conceives of and builds, there would be some computing tasks that they simply
cannot solve? Turing showed remarkably that this was not the case. He proposed a formal (math-
ematical) model of what a computer ought to be, and then showed there was one computer (the
“universal” one) to which one could describe every other computer so that the universal computer
could simulate its actions. By doing so he laid the seed for the modern computer which adopts
the same principles (though with significant differences aimed at practical efficiency). But Turing
himself was not aiming to build these machines - his aim was more to capture logic and human
reasoning. The work in mathematical logic at the point had been discussing what a “theorem”
is, and what “proofs” are, and assertions may never find proofs (even though they may be true).
The crux of all this work was modelling the notion of proofs attempting to extract this notion led
Turing to lay down some axioms about human reasoning that form the basis of his model of a
computer. Turing’s work thus formed the basis of the theory of computing which formalizes what
can, or can not be done by a computer. More modern work focusses on “how quickly” can some
problem be solved on computers, and which problems seem to be inherently slow. It should be
stressed that all this research is independent of the actual technology and if computers speed up to
twice their current speed (as they seem to do every three years), the distinction between quickly
solvable problems and those that are not would not change! Thus the “complexity” of a problem
is really a fundmental notion, and in this article we attempt to describe this notion to the reader.

2 Examples of Computational Problems

We now jump from the very high-level description of computing in the previous section to some very
concrete examples. We hope these will be familiar to every reader and thus allow us to explain basic
language such as “what is a ‘computational problem?” and “what does a solution to a problem
(known as an algorithm) look like?”.

Example 1: Addition. We start with a very simple problem, familiar to most school children,
namely that of adding two numbers. Say we would like to add the number 10234843 to the number
2345639. In elementary school we teach children how to do this. “You start by writing the two
numbers one above the other, with both numbers ending in the same column. Then starting with
the rightmost column, you add the two digits in the column. If this leads to a number less than
ten, then write the number below the two digits and repeat on the next column to the left, else
write the last digit of the sum below the two digits, and then repeat with the next column to the
left, retaining a carry of 1. Keep repeating the procedure till you are done processing every column.
The number on the bottom row is the result you desire.”

The description above is roughly what an algorithm is (despite several defects due to informal-
ities that we will get to shortly). It is a finite length description, that explains how to add two
arbitrary positive numbers, and thus explains how to deal with an infinitely large scope of possible
input numbers, and which terminates on every finite length integer. Of course, one doesn’t need to
mention the words “algorithm” or “infinite many inputs” or “termination” to teach this to a child.
But in retrospect these phrases comes in very useful in explaining the power of this method, and



its surprising effectiveness: it deals with an infinite scope of possibilities with a finite set of rules!

Before moving to the next example, let us perform a simple “analysis” of the above “algorithm”
for adding numbers. Suppose the numbers to be added are each at most n digits long, then how
many simple steps does computing their sum take? The answer, of course, depends on how you
define a simple step and depending on this you may say it takes about n steps (one for each column
of the input) or n + 1 steps (to write down the possibly n + 1 digits of the output) or 5n + 1
steps where each column of the input took at most five elementary calculations (adding the digits,
adding the carry-in if necessary, seeing if the sum is less than ten or more, splitting the result into
two digits, writing the lesser digit and moving the rest into the carry) and the final column of the
output took one step. Despite this seeming arbitrariness of the number of steps, it turns out no
matter how we try to write this expression it comes out into a “linear” form, i.e., of the form a-n+b
where a and b are some constants. What is important is that the answer can not be found in less
than n steps (not say \/n steps which would be much smaller than n) nor does it require n? steps.
This leads to a crude, but extremely useful, approximation to the time complezity of this algorithm
- it takes ©(n) steps (where ©(n) roughly suppresses the a and the b above and other such “lesser
order terms” and just describes the leading term).

Addition is thus our first example of a “computational problem”. The elementary school pro-
cedure for long addition is our first “algorithm”. And its “time complexity” is linear, i.e., ©(n).
Linear time solutions are obvously the fastest possible since it takes that much time to read the
input or write the output, and so addition turns out to be one of the most “efficiently solved”
computational problems. Let us now move to a slightly more complex example.

Example 2: Multiplication. Now lets consider a somewhat more complex “computational
problem”, that of multiplying two numbers. So the input to the task is two numbers, say X and
Y, each at most n digits long. The goal of the task is to produce or “output” the product X x Y,
the result of multiplying X and Y.

The naive method, used in the definition of the product of X xY,istoreport X + X +---+ X
where there are Y copies of X in the list. Even in elementary school we dismiss this approach as
too inefficient. Let us see why: Such a computation would involve Y additions of numbers that are
between n and 2n digits long (Note X x Y is at most 2n digits long.) But Y is a number that is
exponentially large in n. In particular 10"~! <Y < 107, if Y is n-digits long. So this method of
multiplication requires roughly 10™ additions, each of which takes roughly n units of time leading
to a complexity of O(n-10") (dropping leading constants and lesser order terms). This is woefully
slow. To multiply two 10 digit numbers, this would take 100 billion steps! (A schoolchild would
easily reach retirement age adding two such numbers, and this can’t be good.)

Fortunately, the “long multiplication” technique taught in elementary school speeds things up
rapidly. This is the method which roughly computes n numbers, the first being the product of X
with the least significant digit of Y, the second being the product of X with its ten times its next
significant digits and so on, and then adds these n numbers together. A quick calculation shows
that this method takes ©(n?) steps, with the computation being dominated by the time to write
the n intermediate numbers above. T'wo multiply two 10-digit numbers, this is roughly a 100 steps,
which is immensely better than 100 billion! But notice it does take much more time than adding
two 10-digit numbers.

Given that there are at least two different ways to multiply n digit numbers, and one of them
is much faster, and hence desirable, than the other; it makes sense to ask - can it be that there are



even faster procedures to multiply numbers? Faster than ©(n?)? The natural, and first reaction
to these questions is: Surely not! Surprisingly, this is not true! One can actually multiply n-digit
numbers in time much closer to ©(n). (We won’t go into the exact complexity since it requires
more notation, but the running time can be made smaller than ©(n'!) or even ©(n!%) etc. - any
number strictly greater than 1 in the exponent of n will do.)

Yet no algorithm running in time O(n) has been found, suggesting multiplication may indeed
be more “complex” than addition, in the number of steps required. This would correspond to
our intuitive feel that mutliplication is more complex; but note that our feel was based on a
completely misguided belief that multplication ought to take ©(n?) steps. To really “prove” that
multiplication is more complex than addition, one would have to examine every algorithm that
multplies two numbers (and there are infinitely many such algorithms!) and prove each one takes
more than ©(n) time. Such complexity lower bounds (on complexity) are rare for any computational
problem; and for the specific case of multiplication, this question remains wide open.

Finally let us quickly introduce two more problems to expose the reader to more “complexity”
(i.e., more complex problems).

Example 3: Factoring. Our next problem is simply the “inverse” of the problem above. Le.,
now somebody gives us X x Y and we would like to roughly, report X and Y. Stated this way, the
problem is not well-defined (given 1001, would you like as output 77 and 13, or 91 and 11 etc.).
So let us define it more carefully. A number Z greater than one is a prime if it cannot be written
as X x Y where X and Y are both positive and less than Z. The factoring problem is simply the
following: Given as “input” Z report two numbers X and Y smaller than Z such that X xY = Z,
if such a pair exists, else report “Z is prime”.

A simple algorithm to do this, would be to try every number X between 2 and Z — 1 and see
if X divides Z. If Z is an n-digit number, the complexity of such a procedure is at least 107, i.e.,
exponentially large in n. Despite several centuries of effort on this problem, the fastest solutions
remain exponentially slow in n, leading to a widespread belief that no solutions running in time
O(n) or ©(n'?) or “polynomial time” (i.e., ©(n¢) for any constant c) exist. This problem is deeply
interesting in that if this belief were found to be wrong and someone found an efficient solution
for this problem (say running in time ©(n'%) our entire current system of electronic commerce
and its security would crumble (as would any other infrastructure that depends on security on the
internet).

Example 4: Divisors. A very closely related problem to the one above is the following: Given
three n-digit numbers Z, L and U, report a number X such that X divides Z and L < X < U, if
such an X exists.

Of course, a solution to the divisor problem would also immediately lead to a solution to the
factoring problem (just use L = 2 and U = Z — 1). And the naive algorithm for factoring above
would also solve divisor in exponential time. So in several senses the two problems seem the same.
But the problems do turn out to be quite different (at least to the current state of knowledge).
The divisor problem is essentially as complex a search problem as any (in later sections we will
describe describe a class of problems called “NP-complete” problems, to explain this notion more
formally). Among other features, “divisor” has the distinguishing feature that if the answer to the
search question (“find X") is negative - no such X exists - we don’t know how to give a succinct
proof of this statement. (In contrast, in the factoring problem, if the answer is negative and no



such X, Y exist, then Z is a prime and one can prove this succinctly, though describing the proof
is not within the scope of this article.)

Example 5: Solutions to a polynomial system. This example is perhaps the most complex
of the problems we describe, both in terms of "how quickly it can be solved” and also to describe,
so we will ask for the reader’s patience.

A large class of mathematical problems asks the question, does a given polynomial equation
have a solution among the integers. A classical example is that of Fermat’s last “theorem” - which
considers the equations of the form X" +Y" —Z" =0. Formn =2, X =3, Y =4,and Z =5
is one of infinitely many solutions. Fermat asserted (claiming a “proof that didn’t fit the margin
of his page”) that this equation does not have a solution with X, Y and Z being integers for any
integer n > 3. It was only recently (2000) that the problem was finally resolved by Andrew Wiles.
But even slight variations lead to major challenges to mathematicians. For instance Poonen [11]
asserts that if we asked “Are there integers X, Y, Z satisfying X2 + Y3 — Z3 = 337" we still don’t
know the answer.

We could imagine turning over such questions to a computer to solve! This would lead to
the problem: Given a polynomial equation in several variables, does it have an integer solution?
Not surprisingly, (given we don’t know if a specific polynomial in 3 variables X,Y, Z of degree 3
has a solution or not) we don’t have any finite time algorithms for such problems. Even worse,
Matiyasevich [10] proved that no finite procedure can even exist.

Thus moving slowly from computational problems that we solve in elementary school, we have
reached problems that require all the ingenuity of the best mathematicians to solve, and even that
may fail. Thus seeing some of the scope of computational problems via examples, let us now try
to understand some of the concepts more formally.

3 Computational complexity: Some formalisms

Let us start with some terminology we have already been using. A computational problem is given
by specifying a desired relation between inputs and outputs. The goal for any such problem is
to produce, given an input, to produce an output that satisfies this desire. (In mathematical
terminology, the desire is simply a relation on the cartesian product of the space of inputs and the
space of outputs.)

In the case of integer addition and multiplication, for any one input there was only one correct
output - such problems fall in the special class of “functional computations”. For others, such as
factoring and divisor, sometimes several answers are all correct and the task simply requires the
output to be any one of the possibilities.

Specifying a solution to a computational problem, namely an algorithm is much trickier. We
attempted to do so informally for integer addition, but even there our description was vague. It
didn’t define “carry”. Its description of how to repeat the procedure was by analogy, rather than
precision. And its description of the termination condition and the solution were all vague.

All the objections above could be easily remedied, Perhaps the most serious objection would
be that we never completely specified what tasks were achievable in one step, and what means can
be used to specify what step to perform next, and how much of the past can be remembered in
determining the future course of actions. An algorithm needs to specify all of this and completely
unambiguously to a computer. This was the challenge facing Turing as he wrote his monumental



paper. He described a solution which even with the benefit of hindsight is unbelievably slick and
subtle. Before describing his formalism of an algorithm, let us lay out some desiredarata on what
an algorithm should look like.

To motivate some of these, think about the algorithm for multiplying two numbers. As men-
tioned earlier, we think a small (finite) set of “rules” suffice to explain the procedure, despite the
fact that the set of possible inputs is (infinitely) large. For instance children need to learn multi-
plication tables for every digit in order to start multiplying larger numbers. (If one were to work
in binary less memorization would be required, but then the length of the numbers would increase
roughly by a factor of three so one compromises time to multiply for memorization). In any case
after some memorization (finite amounts of it) the child seems to be doing something very “local”
at each point of time. In addition to the multiplication tables, the children does have to does have
to remember some other things in the intermediate stages (like which digit of Y it is currently
multiplying with X, and what the results of the previous multiplications were). To do so, it does
need some “scratch paper” — or “memory”. But once one decides what to write down on the
scratch paper/memory, the algorithms next steps are really simple and do not get more complex
as the amount of stuff it has committed to memory grows larger. Keeping these aspects in mind,
we lay out the following desiderata that the definition of an algorithm should possess.

1. An algorithm should be finitely described (else it wouldn’t fit in this book!).

2. At the same time, it should be capable dealing with infinitely many possible inputs and
produce infinitely many different outputs.

3. It should be allowed to use scratch paper (extra memory) to store intermediate results of
computation.

4. Its actions at any point of time may depend on the past, the input and the scratch contents,
but only in some finite way.

5. It should model every (physically realizable) computational process.

Items (1)-(4) are restrictive and limit the actions of an algorithm. Item (5) on the other hand is
expansive in its desire. It would like the formal definition of the algorithm to include every possible
mental image of an algorithm or a computational process. Furthermore, it is not formal and not
even formalizable till we have a description of “all physically realizable computational processes”.
Indeed this item is a wishful thought - it would be nice to have a definition of an algorithm which
is not immediately challenged by a counterexample of a natural process that fits our intuition but
does not match the formal definition.

In the rest of this section we describe the technical formalism that Turing proposed for his notion
of an algorithm, which manages to satisfy items (1)-(4) and seems to also satisfy (5), modulo details
of the laws of physics.

3.1 Turing’s formalism

This section will be somewhat technical and use basic set theoretic notation. (A reader not familiar
with such notation may simply skip this section and jump to the next.)



All algorithms, according to Turing, are given by a “finite state control” an infinite tape, and a
“head”. Different algorithms differ only in the finite state control, and otherwise their operations
go along the same fixed set of rules.

The control is described by a six tuple (@, X, qo, f,u, 0) where

e () is a finite set (describing the set of states the control can be in).

e Y is a finite set (describing the set of letters than can be written on the tape).
e qo, f € @ (are the initial state and the halting state).

e , € X (is a special symbol).

e 0:QxX—QxXx{+1,0,—1} (is the state transition function).

The “tape” formally is a sequence of functions tape, : ZT — ¥ for every ¢ > 0 and the head
locations are given by a sequence head; € Z7T.

The operation of the Turing algorithm given by the control above is the following;:

Initially, at ¢ = 0, the algorithm is in state ¢y and heady = 1. The tape at ¢ = 0, tape, contains
the input to the algorithm; i.e., given a desired input z = x1,...,z, € (X — {u})", it is provided
to the algorithm by setting tapey (i) = z; for ¢ <n and tape(i) = for i > n.

At any given time step t, the algorithm is in some state ¢; € ) and its tape has some information
given by the function tape;, though the algorithm only sees the current contents at the tape head
where the location of this head is given by head; € Z*.

If the state of the algorithm at time ¢ is the halting state (i.e., ¢: = f), then the algorithm halts,
and the tape contents tape; is the output of the algorithm.

If the state ¢; is not f, then algorithm evolves to time ¢+ 1 where the evolution of the algorithm
to time t+1 is given by the transition function applied to the current state and symbol on tape. Let
(¢',7v,b) = 8(q, tape,(head;)). Then the state of the algorithm at time ¢ + 1 is given by ¢;+1 = ¢’
The location of the head head;; = head; +b. The tape contents remain mostly unchanged except
at the head location and evolve as follows. tape;,(head;) = v and tape; (i) = tape;(i) for every
1 # heads.

3.2 Implications of the formal definition

Remarkably, with total mathematical precision (and with very little mathematical notation), the
above completely describes a formalism of an algorithm. It satisfies our desires as listed in items
(1)-(4) and seems thus far to satisfy the final wish that it should model every intuitive notion of
an algorithm. This assertion is now known as the Church-Turing thesis.

Thesis 3.1 Every physically realizable computation can be simulated on a Turing machine.

(We will remark on the challenges brought up by randomness and quantum physics later.)

Of course, the definition is not a very convenient one to describe algorithms in a natural fashion.
Indeed it may take a long while before a college student in mathematics, who is very familiar with
programming and, of course, elementary school arithmetic, might be able come up with a “Turing
algorithm” for multiplying two integers! But the main point is that it can be done, and so can
any other natural process we may conjure. And among all such possibilities it remains one of the
simplest to reason about mathematically.



The main advantage of the ability to model all computational processes mathematically is that
we can now reason about the limits of computation. Indeed this was one of the main points of
Turing’s work. But first he proved a result which was fundamental to the development of the
modern computer.

He proved that in his formalism there existed a single algorithm, the “universal computer”, that
could take as input a description < A > of another algorithm A, and an input z and report the
output of A on z. In other words, the universal computer could “run” every algorithm.

Today, this is a totally non-surprising result. Most people own computers that can be pro-
grammed to execute any program, and thus any algorithm. This is really a consequence of Turing’s
universalilty theorem. Turing’s work was the first to realize that there is a duality between “data”
and “algorithms”; the universal computer converts every algorithm A into some data < A > that
becomes input to some other algorithm (namely the universal computer). This idea inspired the
contributions of John von Neumann, architect of the “stored-program computer”, which suggested
a somewhat more practical, but mathematically less simple, model of a computer which could deal
with any program as data, and simulate the effect of any algorithm on any input.

4 Computational Complexity

A formal definition of an algorithm is of course somewhat helpful in the design of algorithms but
is not essential. The definition really becomes useful when one tries to understand the limits of
algorithmic power. Indeed this was one of the original motivations behind the formal definition.
Using the fact that every algorithm is potentially an input to other algorithms, Turing described a
computational problem that could provably not be solved by any algorithm.

The halting problem is the computational problem whose inputs are pairs (< A >,x) where
< A > is the description of some algorithm A and the desired output is true is A halts in finite
time on input x and false if it does not halt. Turing showed that the halting problem can not be
solved by any algorithm.

This result and strengthenings led over the years to an immense collection of results showing
the limits of algorithms. It became clear that the power of the universal computer - the fact that
it can simulate any algorithm - was also its bane. It is too easy for computational tasks to become
self-referential, and this leads to many limitation results. Often the self-reference emerges in very
surprisingly simple ways. A highlight result in this direction is that of Matiyasevich [10] who showed
that the problem in our Example 5 above (given a polynomial equation, does it have a zero among
the integers?) was also “undecidable” (i.e., unsolvable by any algorithm)!

4.1 Complexity Measures

Subsequent explorations of computational complexity focussed on the amount of “resources” would
be needed to solve a desired problem on a computer. The main resources of interest are the “time”
that an algorithm would take to solve a given problem, and the “memory” or “space” that it needs
to solve a given problem.

For a specific algorithm, and a specific input, these quantities are easy to define based on
Turing’s formal definition. (Space is the largest index s for which tape,(s) # ., for some ¢, and
Time is the first index ¢ for which ¢; = f.) However, how does one define the complexity of an
algorithm on a “problem” (when one has not fixed a particular input). More crucially, given two



different algorithms whose time-complexity is different on different inputs, how does one compare
them?

Over the years, the theory of computing has converged to two principal “simplifications” to allow
such comparisons, leading to the “worst-case” “asymptotic” complexity measures, which roughly
studies the complexity as the input gets “larger”. Let us explain these simplifications in the case of
time-complexity. But before doing so, let us note that the every input to a computer has a natural
“length” associated with it. (Formally, it is the minimum n such that tapey(n + 1) = ..)

Given an algorithm A, its worst-case time complexity T'4(n), is the maximum over all inputs z
of length n of the time A takes to solve the problem and halt on input x. Worst-case complexity
already simplifies the description of time complexity. Rather than describing running time on each
possible input, we only have to describe it for each possible input length.

But now consider two algorithms for multiplication of n-digit numbers: with the A having
time-complexity Ta(n) = n?, while B having time-complexity Tg(n) = 3000n?. Which of these is
better? To make comparisons between such we use the asymptotic comparisons, which say that if
one of the running time bounds is better than the other by more than a fixed multiplicative factor
for large enough n, then such a bound is better. (So Tp(n) would be better than T'4(n) by this
measure since for every ¢, Tp(n) < Ta(n)/c for every n > 3000c.)

Using such measures computational complexity manages to make comparisons between most
natural algorithms for natural problems. And the first findings are not surprising: For every
“natural” time complexity function ¢(n), there are problems that are solvable in time ¢(n), but
not much faster. So there are problems that for which every algorithm takes time at least n?
asymptotically (i.e., on large enough inputs), and which can be solved in time n?® (for instance).

Unfortunately, the problems for which we have such precise knowledge are somewhat unnatural.
For natural problems our precise knowledge is certainly very weak. For instance for integer addition
(Example 1), we know no algorithm can run in time faster than n and this is also achieved by the
natural algorithm. But this is about the limit for problems without a natural lower bound. For
multiplication (Example 2) we don’t know of an ©(n) time algorithm but don’t know that this is
not possible either. Even worse we don’t know of any “polynomial time” algorithm for solving the
factoring problem (Example 3). The best algorithms still run in time “exponential” in some small
power of n. The divisor problem appears even harder though still solvable in exponential time.

4.2 Polynomial and Exponential Time Complexities

Two very broad classes of running time complexity that turn out to take a central role in computing
are “polynomial time computable problems” (also known by the single letter P) and “exponential
time computable problems”. The former include all problems that can be solved in time ©(n®) for
some constant ¢ (independent of the input size n), while the latter is a broader class and includes
all functions that can be solved in time 29("°) for constant c.

To understand the difference between the two cases, consider some problem X whose complexity
is in P (polynomial time). Let ng be the largest input length for which this problem can be solved
in an hour on a computer. Now suppose we double the amount of time available. How will the
size of the largest solvable input grow? The feature of P is that this input size will grow by a
constant multiplicative factor. For problems with algorithms in time O(n), the ng will double. For
problems with algorithms in time ©(n3), the ng will only grow by a factor of v/2. If this seems
bad, now consider what happens to a problem that is only solvable in exponential time. For such a
problem the corresponding input length would only grow additively, when the running time grows



by a multiplicative factor. Indeed for algorithms running in time 2", doubling the running time
only adds 1 to ng.

For such reasons alone, polynomial running times are vastly preferrable to exponential running
times. But for many classes of problems polynomial running time often offers a “clever alternative”,
or an “insightful solution” to the “brute force” exponential time solution. As a result the search
for polynomial time algorithms is a major focus of research in the theory of computing.

5 The P vs. NP question

One of the most interesting mathematical questions of the current era stems from the gap between
exponential time and polynomial time complexity. There is a wide variety, a “class”, of natural
problems for every one of which there is a natural algorithm running in exponential time. However
for some specific problems in the class, one can also find other algorithms, sometimes very clever
and unnatural ones, that run in polynomial time. The question as to whether such clever algorithms
for every problem in the class is what leads to the famed “Is P = NP?” question developed in the
early 70s in the works of Cook [2], Levin [9] and Karp [8].

To parse the notation of the sentence, let us first clarify that the two sides of the equation
refer to “complexity classes”, i.e., an infinitely large collection of computational problems. P is
the class already described informally above, i.e., all computational problems that can be solved
in polynomial time. (Strictly speaking the class P only contains computational problems described
by Boolean functions, i.e., by functions whose output is either 0 or 1, but the difference is not
significant to this article.)

NP similarly describes another complexity class, the class of “search problems”, i.e., problems
where the goal is to search for some solution that satisfies various constraints (and optimizes some
objective function), where it is easy to check if a solution is valid. Let us start with some examples.

Example 6: Map Coloring: This is the cartographer’s problem: Given a map of potential
nations in some region of a world, can you color all nations with one of three colors so that nations
sharing a border not have the same color? To feed such a problem as input to a computer, one
only needs to list all the nations, and for each nation, list all other nations that share a border
with this nation. It is well known (a major result of 20th century mathematics) that if nations are
connected regions then every map can be colored with four colors. But in some cases maps can be
colored with three or fewer colors, and in others four colors are necessary. The decision version of
the problem simply asks the computer to output true if the map is colorable with 3 colors and false
otherwwise. The search problem would ask for a coloring of the nations with the three colors when
the decision version returns true.

Example 7: Travelling Salesperson Problem: In modern language this could be called the
“super-GPS” problem. Many of the readers are probably familiar with the “GPS”-based navigation
devices - you get into a car and punch in a destination and the GPS device (a computer) returns
the shortest path to the destination. Now consider a more sophisticated problem. You have a set of
places you would like to go to, and have no desires on which order you would like to visit them. Can
you punch in the list of all destinations and ask the device to return the shortest tour that will take
you to all places on your list and bring you back to your starting point? Such a device would be the
“super-GPS” device, and as it turns out it would be solving a significantly harder computational
problem than the standard GPS device solves - the underlying problem is the TSP (for Travelling
Salesperson Problem). The input in the TSP is a list of “cities” (or locations one would like to

10



visit), along with a distance table (matrix, if you prefer) that tells the distance between each pair
of cities. The decision version of the problem is also given a limit D on the total distance one is
willing to travel. The decision problem’s output should be true if there is a tour that visits every
city and returns to the origin with total distance being at most D, and false otherwise. In the
search problem the output should include the order in which the cities should be visited (in the
former case).

Example 8: Shortest Supersequence: The next problem came up as part of the program to
sequence the human genome. As the reader may know the “genome” (or the entire genetic informa-
tion) of any human can be expressed as a long sequence of letters from the alphabet {A, C,G,T'}.
The sequencing challenge faced by the biologists at the end of the twentieth century was to find
this sequence exactly. Over the years the biolgists had found ways of finding moderate length
“substrings” (description of the sequence for a contiguous portion of the genome) of the genome,
but now the challenge is/was: how can one glue all the little pieces together (that are overlapping)
to get the full sequence out. A plausible assumption (not always valid, but often helpful) was
that the original sequence was the smallest possible sequence that contained all the given moderate
length sequences as substrings. If so, can we find the supersequence? This the Shortest superse-
quence problem. The input here is a collection of strings Si,. .., .S, over some finite alphabet (say
{A,C,G,T}), and possibly a target length L. The decision version of the problem asks: Is there
a string T' of length at most L such that each of the strings Si,...,5, appears as a contiguous
subsequence of T'. The search problem would require that the output includes such a string T if it
exists.

All the above problems, as also the problem of Factoring (Example ?77) and Divisor (Example
777) share some common features. In each case, there is an underlying decision question. If the
answer to the decision question is “true”, then a more refined search question can be posed. And,
crucially, the solution to the search question would “certify” the truth. For example in the map-
coloring problem, if a map is 3-colorable, the answer to the search problem would certify it by
assigning colors to each of the nations, and then it would be “easy” for us to verify the validity of
the solution - we simply have to make sure that for each pair of nations, if they share a border, then
their assigned colors are different. For n nations, this takes at most n? time. In contrast the number
of possible colorings is 3" (three choices for each nation) and for all we know, only one of these
might be valid! Thus, naively it seems searching for a solution is hard, while verifying a solution is
easy. This is indeed the heart of the complexity class NP. Indeed the reader is encouraged to see
that each of the problems listed above have “easy” verification procedures given the output of the
search algorithm, when the decision problem has as output true,

Formally, a decision problem II (one where the goal is to output some true/false value) is said
to be in NP, if there is a polynomial time verification algorithm V and polynomial f such that IT
outputs true on some input z of length n if and only if there is some auxiliary input y (the solution)
of length at most f(n) such that V' also outputs true on input = and y. [Note, that even if IT outputs
true on x there may exist y such that V outputs false on input  and y. This simply means that y
is not the right solution to z; but not that = does not have a solution.]

By definition (and by formalizing one’s intuition about the definition) every problem in NP
can be solved in exponential time. But this does not imply that every problem in NP requires
exponential time to solve. Indeed NP includes as a subclass the set of problems P which can be
solved in polynomial time. (In some cases, the algorithm that places some problem in P is highly
non-trivial and counterintuitive.) The main question about NP, encapsulated by the compressed

11



question “Is P = NP?” is: Can every problem in NP be solved in polynomial time? This question
remains open to this day, and is a major challenge to mathematics.

The more common belief is that NP does not equal P. This belief is supported by the fact that
some problems, like factoring, have been considered by mathemticians for centuries and they have
resisted attacks so far and no polynomial time algorithm has been found. We will focus on the
implications of P being equal or unequal to NP later, but let us turn to what we do know.

One of the most interesting features of NP is that we do know which problems are the “hardest”
within the class, in a rough sense. There is a large class of such problems and these are referred
to as the NP-complete problems, and the problems listed above in Examples 6, 7, and 8 are all
examples of NP-complete problems. In what sense are they the hardest? If any of these turn
out to to have a polynomial time algorithm, then we know NP = P, and so every one of these
and every other problem in NP would have a polynomial tie algorithm. Of course, if any of these
do not have a polynomial time algorithm, then NP # P (since the problem is in NP and would
not be in P). It is perhaps interesting to note that one problem we’ve considered so far, namely
Factoring, is not known to be in P but not known to be NP-complete either (and suspected not
to be NP-complete). We will see the relevance below. We also not that in contrast the Divisor
problem is very likely to be NP-complete (i.e., it is NP-complete is we assume certain very likely,
but unproven, statements about the density of prime numbers). For the discussion below, we will
simply regard it as NP-complete.

NP-complete problems are possibly the highlights of NP. They come up in a variety of con-
texts, and seem to reflect very disparate aspects of mathematical/human quests. (Already in the
1980s hundreds of problems were seen to be NP-complete and the work by Garey and Johnson [6]
compiled an enormous list of such problems. Today the list is just too diverse to allow a complete
enumeration.) Yet, NP-completeness implies that they are really the same problem in many dif-
ferent guises. An efficient solution to any one problem immediately solves all the others almost as
efficiently. Thus the diversity is just a superficial one, and NP-completeness brings out the hidden
commonality.

Concretely, one implication of NP-completeness, is that the decision version of NP-complete
problems are as easy/hard as the search versions. This ought to be somewhat surprising. Take
for instance the map-coloring problem. Suppose someone manages to come up with an “oracle”
that can tell which maps are colorable with 3-colors and which ones are not. The “search-decision
equivalence” implies that by repeatedly invoking this oracle (polynomially many times) one can
actually come up with a valid 3-coloring of any map that is 3-colorable. Coming up with this
procedure to use the oracle is not trivial. On the other hand, for the Divisor problem (where the
decision version simply asks if there is a divisor X of a given number Z such that L < X < U),
it is easy to find such a divisor using the oracle by a “divide-and-conquer” approach: If the oracle
returns true, then see if there is a divisor between L and M where M ~ (L +U)/2. If so, search in
this smaller range or else search in the range M + 1 to U. In either case, we’ve reduced the search
space by half with one oracle call! Indeed with some care and using the presumed NP-completeness
of Divisor, as well as the NP-completeness of map coloring, the reader should be able to see how
to obtain a 3-coloring of any 3-colorable map using a map-coloring oracle!

Given the fundamental importance of the P vs. NP question, modern complexity theorists
have strengthened the Church-Turing hypothesis into a significantly stronger one: They now as-
sert /believe that any physically implementable computational system can be simulated by a Turing
algorithm with only a polynomial slowdown. Combined with the belief that NP does not equal P,

12



this turns into limitations on the power of human reasoning as well as nature, and thus turns into
one more “law of nature”. We attempt explain why by exploring the implications of the inequality
P # NP below.

5.1 Optimization

A vast area where humans, and increasingly computers, apply their analytic power is to optimize
the working of some system: This could range from minimizing the size of a computer chip, or
designing an efficient airline schedule given aircraft and crew considerations and passenger demand,
or the optimal location of emergency services (hospitals, fire stations) so as to minimizee the time
to respond to an emergency etc. All such optimization problems tend to have this “verifiability”
feature: Given a “purported solution” it is easy to measure how good it is, and if it satisfies all
the constraints one has. The only hard part might be searching for such a solution. A strikingly
large subset of these problems end up being NP-complete. To understand the implication, note
that most of the optimization is currently done carefully, with experts from the domain using all
their years of accumulated wisdom to “heuristically” optimize the given system. Doing so often
requires significant creativity. If NP were equal to P, there would essentially be an automated
way of optimizing every such system. We could replace all the individual experts with one large
computer and it would simply optimize every such system. Of course, the belief that NP does not
equal P suggests that such hope/optimism is not likely to come true, and we will have to continue
to exploit human creativity and accumulated wisdom!

5.2 Market behavior

A central notion in economics is the equilibrium principle: namely that whenever selfish players
come together to participate in some joint behaviour (like buying/selling goods, or engaging in
joint contracts) then there is an equilibrium behavior by which each player has a strategy for its
behavior which is optimal (maximizes its own profit) given the behavior of the other players. If each
player could also find its “optimal” strategy, then this could be one way to explain the behavior of
economic systems (or markets) and explain how they tend to evaluate the price of various goods.
But can an individual player really determine its optimal behavior, or can a system really somehow
find the equilibrium behavior? It turns out that the evidence is overwhelmingly negative. If one
seeks an equilibrium under even slightly restricted conditions, then the problem turns out to be
NP-complete (see e.g., [7]). And very recently, computational complexity results have started to
show that finding any form of equilibrium may be hard (though not as hard as a general NP
problem) [4].

5.3 Biology

Optimization is not the pursuit only of the most advanced form of intelligent lifeforms. It is a much
more basic natural phenomenon: Place a ball on the top of a sloped surface and it will roll down
to the bottom to minimize its potential energy. More complex behavior of this form is exhibited
by molecules fold themselves to minimize their chemical energy; and quite often the behavior of
a molecule (especially large ones) is a function of its geometric shape. This is a principle used in
the design of advanced drugs, and indeed the behavior of many protiens (which are big complex
molecules) is determined by their shape. An early belief in biology was that protiens fold up to

13



a shape that would lead to the minimum possible potential energy, minimizing over all possible
foldings. But as it turns out, the global minimum is NP-complete to compute (see [1, 3]); and
assuming that nature can not do something efficiently when a Turing algorithm can not, we are
forced to conclude that protiens probably do not fold to the absolute minimum energy shape, but
merely look for a local minimum (where any attempt to change shape starts by increasing the
potential energy).

5.4 Logic and Mathematics

The foundations of mathematics are in formal logic. A system of logic consists of some axioms and
derivations rules. Axioms specify which assertion are assumed true, and derivation rules explain how
a collection of assertions can imply other assertions. A mathematical theorem would simply be an
assertion that can be derived from the axioms by applying the derivation rules in some careful way.
A proof could be a sequence of assertions with an explanation describing how the given assertion is
obtained from previous assertions and derivation rules. Now the exact nature of the derivation rules
(as also axioms) can vary, and so can the exact rules specifying what makes a proof valid, however
broadly two things are always implicit in every system of logic: A proof should be easy to verify,
while finding a proof of a theorem may be potentially hard. While individual derivation rules try to
implement specific ways in which “easiness” can be enforced, the principles of computing give a very
general abstraction of all such procedures: Verification should be polynomial time computable! And
any polynomial time computable verification function should be as good as any other. In this view
of the world, proof verification becomes the canonical polynomial time computable task. Howeever
finding the proof of a theorem remains hard. Specifically one define the SHORTPROOF? problem,
whose input is a purported theorem statement 7' (written over some alphabet) and the integer n
(represented by a sequence of n ones, say), with the decision question being: Is there a proof P of
T of length at most n, according to some given verification algorithm V. SHORTPROOF? turns
out to an NP-complete problem suggesting that if P = NP then one could have an automated
procedure replacing the creativity mathematicians exhibit in finding proofs of theorems. This, of
course, feels very counterintuitive; adding to the general belief that perhaps P may not equal NP
and mathematicians can’t be replaced by computers after all.

5.5 Cryptography

Not all the news coming from the P vs. NP problem, specifically from the assumption P # NP,
turns into limitations on the power of computing. Perhaps the most notable counterexample to
this is the current field of cryptography. If one thinks a little about this: Cryptography is doing
something (hopefully) amazing: My internet provider can see every bit of information that flows
in and out of my computer, and in particular overhears everything I say to my bank during my
electronic banking transactions. Yet the internet service provider (or some disgruntled employee
there) can not start pretending to be me when talking to my bank and therein lies the security of
electronic commerce. How is this made possible? Modern cryptography has made it possible for
two complete strangers to come together and generate a secure "secret” communication channel
between them, while an eavesdropper listening to every bit of information exchanged by the two
strangers can not figure out their secrets. Such cryptography relies on the hope that P # NP (and
more), and in particular in the phenomenon that some functions can be very easy to compute but
hard to invert. Indeed in their seminal work in 1976 creating such a “secret-exchange” protocol [5],

14



the authors Diffie and Hellman point out that “We are on the brink of a revolution in cryptography

.7 essentially because of the possibility that P # NP. They then go on to construct the secret-
exchange protocol which seems secure to this day (no one knows how to break it); which would
certainly break if P = NP; but with the possibility remaining alive that P may not equal NP
and still their scheme (as also all forms of cryptography) may be breakable. Nevertheless their
work and subsequent works in the theory of cryptography have managed to create the possibility a
remarkably secure based on just a few assumptions (which are somewhat stronger than assuming
P+#NP.

6 Conclusions

We conclude this article by repeating a few points made in detail earlier: Computing is not just
the study of what computers do, or can do; it is a much broader study of logical reasoning entirely
and offers the foundational framework for a wide variety of human activities. The examples of
addition and multiplication of numbers should highlight how many of us “compute” all the time;
but more importantly every other form of reasoning we do is a form of computation as well. So
in effect the study of computing is one of the purest ways of studying human or more generally
behavior of “intelligent” entities. Given its ambititious nature, it should not come as a surprise that
many of the tasks one would like to compute become impossible. But given the pervasive nature of
computing, such “impossibility”, or in the case of NP-completeness “infeasibility”, results should
be thought of as “natural laws” that we can not afford to overlook.

Of course, the science of computing remains intimately connected to the practice of computing;
and as computers become more powerful, more interconnected, and more capable of controlling
mechanical devices and more ambititous in their attempt to communicate with humans, the nature
of the science is also changing with it. A modern theory of “interacting computers” sees many more
laws than just “universality” or “irreversibility” (NP-completeness). It should be safe to assume
that the course of the twenty-first century will be dictated to a large extent by the new paths that
the science and technology take.

Acknowledgments

Thanks to Joe Kilian for permission to use Example 4. Thanks for Scott Aaronson and Albert
Meyer for reminding me of Example 5. Thanks to Costis Daskalakis for pointers to works in game
theory.

References

[1] Bonnie Berger and Frank Thomson Leighton. Protein folding in the hydrophobic-
hydrophilic(hp) model is np-complete. Journal of Computational Biology, 5(1):27-40, 1998.

[2] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
ACM Symposium Theory of Computing, pages 151-158, Shaker Heights, Ohio, 1971.

15



[3]

Pierluigi Crescenzi, Deborah Goldman, Christos H. Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. Journal of Computational Biology,
5(3):423-466, 1998.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. Communications of the ACM, 52(2):89-97, 2009.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22:644-654, November 1976.

Michael R. Garey and David S. Johnson. Computers and Intractability. Freeman, 1979.

Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior, 1:80-93, 1989.

Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, (R. Miller, J. Thatcher eds.), pages 85-103, 1972.

Leonid A. Levin. Universal search problems. Problemy Peredachi Informatsii, 9(3):265-266,
1973.

Yuri Matiyasevich. Hilbert’s 10th Problem. The MIT Press, 1993.

Bjorn Poonen. Undecidability in number theory. Notices of the AMS, 55(3):344-350, March
2008.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42):230-265, 1936. A correction ibid, 43,
544-546.

16



