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OPTIMAL TESTING OF MULTIVARIATE POLYNOMIALS OVER
SMALL PRIME FIELDS∗

ELAD HARAMATY†, AMIR SHPILKA‡ , AND MADHU SUDAN§

Abstract. We consider the problem of testing whether a given function f : Fn
q → Fq is close to

an n-variate degree d polynomial over the finite field Fq of q elements. The natural, low-query test for
this property would be to first pick the smallest dimension t = tq,d ≈ d/q such that every function
of degree greater than d reveals this aspect on some t-dimensional affine subspace of Fn

q . Then,
one would test that f when restricted to a random t-dimensional affine subspace is a polynomial of
degree at most d on this subspace. Such a test makes only qt queries, independent of n. Previous
works, by Alon et al. [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032–4039], Kaufman and Ron
[SIAM J. Comput., 36 (2006), pp. 779–802], and Jutla et al. [Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, 2004, pp. 423–432], showed that this natural test
rejected functions that were Ω(1)-far from degree d-polynomials with probability at least Ω(q−t).
(The initial work [IEEE Trans. Inform. Theory, 51 (2005), pp. 4032–4039] considered only the case
of q = 2, while the work [Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, 2004, pp. 423–432] considered only the case of prime q. The results in [SIAM J.
Comput., 36 (2006), pp. 779–802] hold for all fields.) Thus to get a constant probability of detecting
functions that are at a constant distance from the space of degree d polynomials, the tests made q2t

queries. Kaufman and Ron also noted that when q is prime, then qt queries are necessary. Thus
these tests were off by at least a quadratic factor from known lower bounds. Bhattacharyya et al.
[Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, 2010, pp.
488–497] gave an optimal analysis of this test for the case of the binary field and showed that the
natural test actually rejects functions that were Ω(1)-far from degree d-polynomials with probability
Ω(1). In this work we extend this result for all fields showing that the natural test does indeed reject
functions that are Ω(1)-far from degree d polynomials with Ω(1)-probability, where the constants
depend only on q the field size. Thus our analysis shows that this test is optimal (matches known
lower bounds) when q is prime. The main technical ingredient in our work is a tight analysis of the
number of “hyperplanes” (affine subspaces of co-dimension 1) on which the restriction of a degree
d polynomial has degree less than d. We show that the number of such hyperplanes is at most
O(qtq,d )—which is tight to within constant factors.
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1. Introduction. Testing low-degree polynomials is one of the most basic prob-
lems in property testing. It is the prototypical problem in “algebraic property testing”
and has seen many applications in probabilistic checking of proofs. In this work we
focus on this basic problem and give optimal (to within large constant factors) results
for the setting of degree d multivariate polynomials over fields of constant prime size.
This setting has been considered before in [AKK+05, KR06, JPRZ04, BKS+10], but
their results were off by a “quadratic factor.” We remove this gap here and in the
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process introduce some algebraic results about restrictions of low-degree polynomials
to affine subspaces that may be of independent interest.

To describe our work and the previous work more precisely we start with some
basic notation. For integer t, we let [t] denote the set {1, . . . , t}. We let Fq denote
the finite field of cardinality q. We consider the task of testing functions mapping Fn

q

to Fq. Let P(n, d, q) denote the set of all n-variate polynomial functions over Fq of
total degree at most d. We let δ(f, g) = Prx[f(x) �= g(x)] denote the distance between
f and g, where the probability is over x chosen uniformly at random from Fn

q . Let
δd(f) = ming∈P(n,d,q){δ(f, g)} denote the distance of f from the space of degree d
polynomials. We say f is δ-far from g if δ(f, g) ≥ δ and δ-close otherwise. We say
f is δ-far from the set of degree d polynomials if δd(f) ≥ δ. The goal of low-degree
testing is to design a test to distinguish the case where δd(f) is zero from the case
where it is large.

A k-query tester (for P(n, d, q)) is a probabilistic algorithm T = T (n, d, q) that
makes at most k = k(d, q) queries to an oracle for the function f : Fn

q → Fq and
accepts f ∈ P(n, d, q) with probability one. It has δ-soundness ε if it rejects every
function f with δd(f) ≥ δ with probability at least ε. We say T is absolutely sound if
for every q and δ > 0 there exists ε > 0 such that for every d and n, T = T (n, d, q)
has δ-soundness ε.

With the above definitions in place, we can now describe previous works. (We
note that the testing problem was studied actively for large fields and small degrees
starting with [RS96] and in the PCP literature, but we will not describe such works
here.) The setting where the degree of the polynomial is larger than the field size
was first studied by Alon et al. [AKK+05], who considered the setting of q = 2. They
described a basic test that made O(2d) queries.1 Their analysis showed that this test
has δ-soundness Ω(δ2−d). Thus to get an absolutely sound test, they iterated this
test O(2d) times, getting a query complexity of O(4d). They showed that no test with
o(2d) queries could test this family, thus giving a bound that was off by a quadratic
factor.

The setting of general q was considered by Kaufman and Ron [KR06] and indepen-
dently (for the case of prime q) by Jutla et al. [JPRZ04]. They (in particular [KR06])
showed that there exists an integer t = tq,d ≈ d/q (we will be more precise with this
later) such that the natural test for low degreeness makes Ω(qt) queries. They also
showed that qt is a lower bound on the number of queries if q is prime. Finally they
analyzed this O(qt) query test, showing that the δ-soundness of this test is Ω(δq−t),
again leading to an absolutely sound test with query complexity O(q2t) which is off by
a quadratic factor. The proof techniques of [AKK+05] and [KR06, JPRZ04] were sim-
ilar, and indeed the subsequent generalization of Kaufman and Sudan [KS08] shows
how these results fall in the very general framework of “affine-invariant” property
testing, where again all known tests are off by (at least) a quadratic factor.

Bhattacharyya et al. [BKS+10] raised the question of getting “optimal tests” for
P(n, d, q). Again they restricted their attention to the case of q = 2 and came up with
a new proof technique that allowed them to prove that the original O(2d)-query test
of [AKK+05] is absolutely sound. This also gave the first example of a linear-invariant
property with tight bounds on query complexity.

The proof of [BKS+10] was significantly more algebraic than those of [AKK+05,

1Throughout this paper we think of q as a constant, and so dependence on q may sometimes
be suppressed. Dependence on d is crucial, and complexity depending on n will be too large to be
interesting.
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KR06, JPRZ04]. (Indeed the work of [KS08] confirms that the central ingredient in
the proofs in [AKK+05, KR06, JPRZ04] is the same and relies on very little algebra.)
However, the proof of [BKS+10] seemed very carefully tailored to the case of F2 and
extensions faced several obvious obstacles. In this work we manage to overcome these
obstacles and show that the O(qt)-query tester of [KR06] is also absolutely sound
(though as it turns out, the constant grows extremely fast as a function of q). En
route to proving this we obtain several new results on the behavior of polynomials
when restricted to lower dimensional affine spaces, which may be of independent
interest. Below we explain our main theorem and some of the algebraic ingredients
that we obtain along the way.

1.1. Our main results. To state the test of [AKK+05, KR06] and our theorem
we need a few more definitions. For an affine subspace A in Fn

q , let dim(A) denote
its dimension. For function f : Fn

q → Fq and affine subspace A, let f |A : A → Fq

denote the restriction of f to A. For a function f , we let deg(f) denote its degree as a
polynomial. We use the fact that f |A can be viewed as a dim(A)-variate polynomial
with deg(f |A) ≤ deg(f). A special subclass of tests for P(n, d, q) would simply pick
an affine subspace A of Fn

q and verify that deg(f |A) ≤ d. We introduce the concept
below of the testing dimension which attempts to explore the minimal dimension for
which such a test has positive soundness.

Definition 1.1 (testing dimension). For prime power q and nonnegative d,
the testing dimension of polynomials of degree d over Fq is the smallest integer t
satisfying the following: For every positive integer n and every function f : Fn

q → Fq

with deg(f) > d, there exists an affine subspace A of dimension at most t such that
deg(f |A) > d. We use tq,d to denote the testing dimension.

This notion was studied in [KR06], where the following fact was proved. As it
also follows easily from our results we give the proof in section 4.3.

Proposition 1.2. The testing dimension tq,d = � d+1
q−q/p	.

The test proposed by [KR06] is the following:
t-dimensional (degree d) test. Given oracle access to f : Fn

q → Fq, pick a random
affine subspace A with dim(A) = t and accept if deg(f |A) ≤ d.

Kaufman and Ron [KR06] show that the tq,d-dimensional test, which has query
complexity qtq,d and accepts f ∈ P(n, d, q) with probability one, has δ-soundness
roughly Ω(δq−tq,d). We show that the test is absolutely sound (and in fact instead
of losing a q−tq,d factor we even gain it for small δ). Specifically, if we let ρd(f, t)
denote the probability that the t-dimensional test rejects a function f , then we show
the following theorem.

Theorem 1.3. For every prime power q, there exist constants ε1, ε2 > 0 such
that for every d and n and every function f : Fn

q → Fq, it is the case that ρd(f, td,q) ≥
min{ε1qtd,qδ(f), ε2}. In other words, the tq,d-dimensional test rejects f with probabil-
ity min{ε1qtq,dδ(f), ε2}, where tq,d is the testing dimension for degree d polynomials
over Fq.

Our analysis follows the approach of Bhattacharyya et al. [BKS+10], who de-
rive their analysis by first studying the behavior of functions that are not degree d
polynomials when restricted to affine subspaces of co-dimension one. Following their
terminology we use the phrase hyperplane to refer to subspaces of Fn

q of co-dimension
one (i.e., dimension n− 1), and we let H(q, n) denote the set of all hyperplanes in Fn

q .
We highlight two key quantities of interest to this approach. The first of these asks
how often a degree d polynomial can drop in degree when restricted to hyperplanes.
Formally, we have the following definition.



OPTIMAL TESTING OF MULTIVARIATE POLYNOMIALS 539

Definition 1.4. For prime power q and nonnegative integer d, let N = N0(q, d)
be the maximum over all n and let all functions f ∈ P(n, d, q) of the number of
hyperplanes A1, . . . , AN be such that deg(f |Ai) < deg(f). In other words,

N0(q, d) = max
n,f∈P(n,d,q)

|{A ∈ H(n, q)| deg(f |A) < deg(f)}|.

A priori it may not be clear that N0(d, q) is even bounded (i.e., is independent of
n), but an easy argument from [BKS+10] shows this quantity is at most qd. For our
purposes we need a much tighter bound of roughly qtq,d , and our first main technical
theorem (of two) shows that this is indeed the case.

Theorem 1.5. For every q, d, N0(d, q) ≤ qtq,d+1. In other words, if f ∈
P(n, d, q), then |{A ∈ H(q, n)| deg(f |A) < deg(f)}| ≤ N0(d, q) ≤ qtq,d+1.

We note that N0(d, q) > qtq,d−1. Indeed, let d = t(q− q
p )+b, where b < q− q

p , and

define f =
∏b

i=1 x
q− q

p+1

i

∏t
i=b+1 x

q− q
p

i . One can verify that f is a degree d polynomial,
and on any hyperplane supported only on the first t ≥ tq,d − 1 variables, the degree
of f decreases when restricted to that hyperplane.

The above theorem gives a tight analysis (up to constant factors depending on the
field size) of the number of hyperplanes where a degree d polynomial drops in degree.
However, for the analysis of the low-degree test, we need a similar theorem that talks
about general functions. Extracting the correct quantity of interest (one that can
be analyzed and is useful) turns out to be somewhat subtle. Rather than looking at
general functions, or even functions that are far from polynomials, we look only at
the restrictions of functions to hyperplanes and ask “When does pairwise consistency
imply global consistency.”

Definition 1.6. For prime power q and nonnegative integer d, let N = N1(q, d)
be the largest integer such that the following holds: There exist n, N hyperplanes
A1, . . . , AN ∈ H(n, q), and N polynomials P1, . . . , PN ∈ P(n, d, q) such that the fol-
lowing hold:

Pairwise consistency. For every i, j ∈ [N ] it is the case that Pi|Ai∩Aj = Pj |Ai∩Aj .
Global inconsistency. For every Q ∈ P(n, d, q), there exists i ∈ [N ] such that

Q|Ai �= Pi|Ai .
Note that viewed contrapositively, the definition of N1 says that if some arbitrary

function f looks like a degree d polynomial on N1(q, d) + 1 hyperplanes, then its
restriction to the union of these hyperplanes (which is typically an overwhelmingly
large set) is a polynomial of degree d, and hence f is close to a polynomial of degree d.
Our second main technical theorem shows that N1 is not much larger (in a technical
sense) than N0(q, d).

Theorem 1.7. For every q, there exists a constant λq such that for every d,
N1(q, d) ≤ qtq,d+λq . In other words, if A1, . . . , AK ∈ H(n, q) and P1, . . . , PK ∈
P(n, d, q) are such that Pi|Ai∩Aj = Pj |Ai∩Aj for every i, j ∈ [K] and K > qtq,d+λq ,
then there exists Q ∈ P(n, d, q) such that Q|Ai = Pi|Ai for every i ∈ [K].

In section 2, we show how the technical theorems above (Theorems 1.5 and 1.7)
lead to an analysis of the low-degree test.

1.2. Comparison to [BKS+10]. While our proof outline does follow the same
one as that of [BKS+10] the technical elements are much more complex, and we point
out the similarities and differences here. Both proofs work by induction on the number
of variables. Key to this induction is an ability to understand how functions (that are
not polynomials and are even far from them) behave on restrictions to hyperplanes.
Once such an understanding is obtained, the proofs are immediate given the work of
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[BKS+10]—and we simply mimic their proofs. (We note that much of the novelty
of [BKS+10] is in this part, but given their work there is no novelty in ours in this
part.) Their proof roughly shows that for t̃ = logq N1(q, d) the t̃-dimensional test is
absolutely sound. To make this useful, one needs two more ingredients: (1) a good
upper bound onN1(q, d) and (2) a (possibly weak) relationship between the soundness
of a t-dimensional test and the soundness of the (t− 1)-dimensional test (so that one
can eventually analyze the tq,d-dimensional test).

In [BKS+10] both of these elements turn out to be simple (once one has the right
insights). N1(q, d) is at most qd (by a simple linear algebra argument). And a t-
dimensional test can be related to a t− 1 also by similar linear algebra arguments for
the case q = 2. In our case it turns out both ingredients are nontrivial.

For (2) we prove (see Lemmas 4.6 and 4.7) that a (t−1)-dimensional test (as long
as t−1 ≥ tq,d) has δ-soundness at least 1/q times the δ-soundness of the t-dimensional
test. Even this step (though simple in comparison to the other part) is not immediate
and requires a more algebraic view of restrictions than in previous works.

For (1), our task turns out to be much harder. We consider the simpler case
of bounding N0(d, q) first, and this ends up using several algebraic features of affine
transformations and restrictions to hyperplanes (see Lemmas 4.3 and 4.8). This still
leaves the question of bounding N1(d, q), for which we build an inductive proof, where
each inductive step uses the bound on N0(d, q). The most problematic part, however,
turns out to be the base case, where we need to show that the abundance of hy-
perplanes leads to a cover of most of Fn

q by q “near-parallel” hyperplanes. For this
part we resort to the “density Hales–Jewett theorem” [FK91, Pol09], which says (for
our purposes) that for every q and every ε > 0 there is a c = cq,ε such that ε · qc
hyperplanes in c dimensions will contain q “near-parallel” ones. (Unfortunately this
leads to a horrendous bound on cq,ε, but fortunately ε is independent of n and d, and
so this suffices for Theorem 1.3.)

2. Overview of our proof. Here we give an overview of our proof and lead the
reader through the technical parts of the paper. We start by listing ingredients in
order of increasing “complexity” that we prove (each of which we argue is necessary)
and then describe how these are put together to get our final analysis. All the novel
technical ingredients talk about the behavior of some function f when restricted to
hyperplanes.

Step 0. We start by considering an m-variate function f which is not a degree d
polynomial and ask Does there exist a single hyperplane on which f is not a degree
d polynomial? Obviously existence of such a hyperplane is a necessary condition for
any (t < m)-dimensional test to work. By definition this question has an affirmative
answer ifm > tq,d, the testing dimension. The testing dimension was already analyzed
by Kaufman and Ron [KR06], but we end up reproving this result, since we need
stronger versions of this analysis (as we describe next). Proposition 1.2 captures this
step. Its proof relies on Lemma 4.6, which is a central ingredient in our next step.

Step 1. Next we consider the same function f as above, but now ask Is the
fraction of hyperplanes on which f has degree greater than d a constant (independent
of d)? Such a statement is necessary to show that the q−m-soundness of the (m− 1)-
dimensional test is an absolute constant (independent of d): the function f is q−m-far
from degree d polynomials, and so the fraction of (m−1)-dimensional affine subspaces
on which f is not of degree d better be a constant. Such a strong analysis is not implied
by our theorem statement, but it is essential to the proof approach of [BKS+10]. We
give an affirmative answer to this question. Proving this turns out to be nontrivial
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and does not follow from either [KR06] or [BKS+10]. Indeed our proof is new even
for the case of q = 2.

We manage to give a relatively clean proof of this statement by interpreting
restrictions to hyperplanes algebraically. Since this style of analysis is central also to
the next step, we give the essential details here (though formalizing some steps ends
up requiring more work). For simplicity, assume we are restricting f to a hyperplane
of the form x1 =

∑m
i=2 yixi + y0. The restriction of the function f to this hyperplane

is now given by the function fy2,...,ym,y0(x2, . . . , xm) = f(
∑m

i=2 yixi + y0, x2, . . . , xm),
which can be viewed as a polynomial in x2, . . . , xm whose coefficients themselves are
polynomials in y2, . . . , ym, y0. By the previous paragraph, it (roughly) follows that
there exists a setting of y2, . . . , ym, y0 such that fy2,...,ym,y0 is not a polynomial of
degree d. In turn this implies that there is a monomial of degree greater than d in
x2, . . . , xm whose coefficient is a nonzero function of y2, . . . , ym, y0. The key now is to
notice that this coefficient is a polynomial in y2, . . . , ym, y0 of degree at most q−1 and
so is nonzero with probability at least 1/q when y2, . . . , ym, y0 are assigned randomly.

This step is performed in section 4.3. The heart of the proof is given by Lemma 4.6,
which formalizes the above argument and extends it to general hyperplanes (which
may not have support on x1). An important ingredient of the general proof is that
instead of trying to understand the function f we apply an invertible linear trans-
formation to the space Fm

p and consider the function f ◦ A. It is clearly enough to
understand the restrictions of this function. The point is that we can pick A in such
a way that f ◦A contains a canonical monomial which is a monomial of a very special
form (see Definition 4.1). Intuitively, a canonical monomial has its degree “squeezed”
to a few variables. The notion of canonical monomials did not appear in [KR06], and
it makes our proofs considerably simpler. Roughly, having a canonical monomial in a
polynomial enables us to focus almost entirely on this monomial instead of the whole
polynomial. Furthermore, when restricting our attention to canonical monomials, the
algebraic approach, hinted at in the previous paragraph, becomes transparent and
easy to use. For that reason canonical monomials will play an important role in all
our proofs. Proving the existence of a transformation A such that f ◦A has a canon-
ical monomial is done in Lemma 4.3. Basically, the proof shows that a canonical
monomial for f can be found by taking the maximal monomial, in the graded lexi-
cographical order, among all monomials in {f ◦ B}, when we run over all invertible
linear transformations B. We discuss canonical monomials in section 4.1.

Step 2. We then move to the third in the series of questions. If previously we
asked whether there exists a hyperplane, or even a noticeable fraction of hyperplanes
where f has degree greater than d, we now ask Do an overwhelming number of hy-
perplanes reveal that f has degree greater than d? We analyze this question when f is
a polynomial of degree d + 1, thus leading to an analysis of N0(q, d) (or N0(q, d + 1)
to be precise). We show that the number of hyperplanes on which f has degree d is
O(qtq,d ). So if the number of variables m is really large compared to q, d, then the
fraction of hyperplanes where f drops in degree is tiny.

This bound again views the restriction of f to hyperplanes of the form x1 =∑m
i=2 yixi + y0 as a polynomial in x2, . . . , xm and y2, . . . , ym, y0. We then perform

an elementary, though somewhat nonobvious, algebraic analysis of this polynomial to
show that there are few hyperplanes where f loses degree. Roughly, we show that
when working with an appropriate basis for the space (i.e., when applying the linear
transformation that guarantees the existence of a canonical monomial, found in the
previous step) it is the case that for every fixing of y2, . . . , yt, where t = logq N0(q, d) ≈
tq,d, there is at most one setting of yt+1, . . . , ym such that the degree of f decreases
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on the corresponding hyperplane. Canonical monomials again play a crucial role in
the proof.

This step is captured by Theorem 1.5, which is proved in section 4.4. Lemma 4.8
is the main step in which we give the analysis for hyperplanes of the form x1 =∑m

i=2 yixi + y0 that is described above.
Step 3. This leads to the final step (which unfortunately ends up getting proved in

two substeps), where we consider general functions that are Ω(q−tq,d)-far from degree
d polynomials and show that even in this case (which subsumes the case of degree
d+1 polynomials), the number of hyperplanes on which f drops in degree is bounded
by O(qtq,d ), thus giving a bound on N1(q, d).

This part itself is proved by induction on the number of variables (with the base
case being the hardest step; we will get to that later). And the inductive claim is
somewhat different: instead of talking about functions that are far from polynomials
(in some loose sense), we explicitly ignore a known small subset of the domain and
argue f is a polynomial on the rest. Specifically, we assert that if a function f is a
degree d polynomial on a large, K > N1(q, d), number of hyperplanes A1, . . . , AK ,
then there is a degree d polynomial Q that agrees with f on the union of A1, . . . , AK .
Since the union has large volume, it follows that f is close to some degree d polynomial
(specifically Q).

The inductive claim is relatively easy when the number of variables is very large.
In that case if we consider the restriction of f to some generic hyperplane A, then all
the intersections Ai∩A are distinct, and we can use the inductive claim to assert that
f |A∩(∪iAi) is a degree d polynomial Q0. Since this holds with overwhelmingly high
probability over A, we can claim the same holds also for the q − 1 parallel shifts of
A, and since these cover Fm

q , we can claim (by interpolation) that f |∪iAi is a degree
d + q polynomial Q. Now, if K > N0(q, d + q), then this allows us to use the bound
from the previous step (the low-degree polynomial Q cannot drop in degree too often)
to claim that Q must be a degree d polynomial. This is the argument behind the
induction step in the proof of Theorem 1.7, which is given in section 4.5.

All this works fine when the number of variables is large. As the number of
variables gets smaller, some things break down. A∩Ai starts coinciding with A∩Aj

for some pairs, etc., but careful counting (Claim 4.12) makes sure we do not lose too
much in this as long as the number of variables is sufficiently larger (by an additive
constant) than logq K (the number of given hyperplanes). This becomes our “base
case,” and we resort to a different argument at this stage.

In the base case, we have that a constant fraction of all hyperplanes are “good”;
i.e., f restricted to these form a degree d polynomial. It seems intuitive that at
this stage f ought to be a degree d polynomial on the union of these (huge) number
of hyperplanes, yet there seems to be no obvious way to conclude this intuitive fact.
Furthermore, the density of hyperplanes is so high that restricting our attention to any
lower dimensional hyperplane would not maintain the number of hyperplanes on the
restriction (namely, for every hyperplaneA there are i, j ∈ [K] such that A∩Ai collides
with A∩Aj). However, we now use the density in our favor by finding q hyperplanes,
say A1, . . . , Aq, that have the same intersection. In other words, Ai∩Aj = Aj∩Ak for
every triple of distinct i, j, k ∈ [q]. To show that q such hyperplanes exist we use the
“density Hales–Jewett theorem” [FK91, Pol09]—a somewhat heavy hammer with a
high associated cost (see Theorem 3.4). The high cost is that the base case dimension
has to be lower bounded by a very large constant, albeit a constant—specifically it is
some sort of Ackerman function of some polynomial in q (in the improved proof of the
density Hales–Jewett theorem [Pol09]). Nevertheless it does imply that if logN1(q, d)
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We think of the horizontal line {x1 = α} as a description of the corresponding hy-
perplane. The diagonal lines correspond to the different Ai’s. The intersection of
all Ai’s, depicted by the black circle, is an affine subspace of co-dimension 1 inside
{x1 = 0}. Focusing on the subspace {x1 = 2}, we have the q different intersections
Ai ∩ {x1 = 2}, captured by the circles. Furthermore, all those subspaces are parallel
to each other and cover all of {x1 = 2} (which is not evident from the picture).

Fig. 1. Near-parallel hyperplanes.

is sufficiently large as a function of q (a constant we label λq,6), then this allows us to
conclude that q such “near-parallel” hyperplanes exist. Now, with a linear change of
basis, we can assume that the Ai∩Aj is contained in the hyperplane x1 = 0, and that
none of the hyperplanes A1, . . . , Aq is equal to the hyperplane x1 = 0. The crux of the
idea is that now, on all the q − 1 hyperplanes, x1 = α, α ∈ Fq − {0}, the hyperplanes
A1 ∩ {x1 = α}, . . . , Aq ∩ {x1 = α} are parallel. The situation is perhaps better
explained by Figure 1 (for the case q = 5). This allows us to prove (using arguments
similar to the inductive step) that f on these hyperplanes is a degree d polynomial,
and roughly tells us what Q mod (xq−1

1 − 1) is (where Q is the desired polynomial
of degree d that agrees with f on the union ∪i∈[K]Ai). Pushing our luck further, we
note that if logN1(q, d) = t+λq,6, then we can find t independent variables x1, . . . , xt

such that we know the polynomial Q mod
∏t

i=1(x
q−1
i − 1). If t > d/(q − 1), this

should tell us exactly what Q is, and with some careful examination we confirm this
intuition, and show that this polynomial Q agrees with f on every one of the given
hyperplanes, thus concluding the analysis in the base case. The base case is given in
Lemma 4.11.

Putting things together. Once we have the upper bound on N1(q, d) (tight to
within constant factors that depend only on q), it is straightforward to mimic the
work of [BKS+10] to derive an analysis of the (roughly) logq N1(q, d)-dimensional
test, which shows that this test is absolutely sound. We then use the fact from Step
2 (for every m > tq,d an m-dimensional nondegree d polynomial f is of degree greater
than d on at least a 1/q fraction of the hyperplanes) to conclude that the soundness
of the (m − 1)-dimensional test is at least a 1/q fraction of the soundness of the m-
dimensional test, as long as m > tq,d. After a constant number of such steps, we end
up with a soundness analysis of the tq,d-dimensional test also!

Organization of this paper. Section 3 contains some notation and basic facts re-
garding polynomials. We discuss the density Hales–Jewett theorem in section 3.2.
The main body of the paper is section 4. The section is organized as follows. In
section 4.1 we give the definition of canonical monomials and show how to “rotate”
the space in order to find one (Lemma 4.3). Section 4.2 shows the basic and simple
fact that the rejection probability of the �-dimensional test is monotone in �, and in
section 4.3 we prove that although the rejection probability is monotone, it does not
decrease too fast when we go from � to � − 1 (Lemma 4.6). We then give the proofs
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of our two main technical contributions. Theorem 1.5, in which we bound N0(q, d), is
proved in section 4.4, and Theorem 1.7 is proved in section 4.5. Section 4.6 contains
a strengthening of Theorem 1.7 (given as Theorem 4.16) that is proved in a relatively
direct manner from Theorem 1.7. Finally, we analyze the tq,d-dimensional test in
section 5, giving a proof of Theorem 1.3, our main theorem.

3. Preliminaries. Throughout the paper q = pk is a power of a prime number
p and Fq is the field of characteristic p with q elements. We denote by ≡p equality
modulo p. Recall that for every 0 �= α ∈ Fq it holds that αq−1 = 1. For an integer t
we denote [t] = {1, . . . , t}.

Recall that H(q, n) is the set of hyperplanes in Fn
q . Similarly, we denote Aff(q, n)

the set of affine linear functions in Fn
q . We will often use the fact that every hyperplane

is the set of zeros of an affine linear function. We will also use the term flat to denote
an affine subspace (of dimension possibly lower than n−1). When L =

∑n
i=1 αixi+α0

is a linear function, we call α0 the free term of L.
Let d, e ∈ N be integers and denote by d =

∑
i dip

i and e =
∑

i eip
i their base p

expansion. Namely, for all i 0 ≤ di, ei < p. We denote d ≤ e if d is not larger than e
as integers and d ≤p e if for every i it holds that di ≤ ei. We recall Lucas’s theorem.

Theorem 3.1 (Lucas’s theorem). In the notation above,
(
e
d

) ≡p

∏
i

(
ei
di

)
, where(

ei
di

)
= 0 if ei < di.

In particular,
(
e
d

) �≡p 0 if and only if d ≤p e. It follows that for e < q the expansion
of (y + z)e in Fq has the form

(3.1) (y + z)e ≡p

∑
d≤pe

(
e

d

)
ye−dzd.

We will represent functions f : Fn
q → Fq as n-variate polynomials, with individual

degrees at most q − 1. Whenever we have a polynomial that has a variable of degree
larger than q − 1 we will use the identity xq − x ≡p 0 to reduce its degree.

3.1. The distance between polynomials. A basic fact that is required for un-
derstanding the testing dimension for polynomials of degree d is the minimal distance
between any two such polynomials. It is well known (cf. [DK00]) that if d = r(q−1)+s,
where 0 ≤ s < q− 1, then the relative minimal distance is (q− s)q−r−1. However, for
completeness we provide an easy proof of a slightly weaker claim that still suffices for
our needs.

Lemma 3.2. Let q = pk, where p is a prime number. Let f �= g ∈ Fq[x1, . . . , xn]
be two distinct polynomials of degree at most d and individual degrees at most q − 1.
Then δ(f, g) ≥ q−d/(q−1).

Proof. By linearity it is enough to lower bound the distance of a nonzero f from
the zero polynomial. In other words, we have to bound from below the number of
nonzeros of f . We do so by induction on n. When n = 1, since f has degree at most
d < q, it has at most d zeros and therefore δ(f, 0) ≥ (q − d)/q = 1− d/q ≥ q−d/(q−1),
where the last inequality follows from Claim 3.3 proved below. For the induction step,
we express f as a polynomial in xn:

f(x1, . . . , xn) =

q−1∑
e=0

xe
n · ge(x1, . . . , xn−1).

Let emax be the degree of f as a polynomial in xn. As deg(gemax) ≤ d − emax,
the induction hypothesis implies that the number of nonzeros of gemax is at least
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q−(d−emax)/(q−1) · qn−1. For any such nonzero (a1, . . . , an−1) ∈ Fn−1
q we get that

f(a1, . . . , an−1, xn) is a nonzero polynomial in xn of degree emax and therefore has at
least q − emax nonzeros. Consequently,

δ(f, 0) ≥ (q − emax) · q−(d−emax)/(q−1) · qn−1/qn = (1− emax/q) · q−(d−emax)/(q−1)

≥(∗) q−emax/(q−1) · q−(d−emax)/(q−1) = q−d/(q−1),

where inequality (∗) follows from Claim 3.3.
Claim 3.3. For any 0 ≤ x ≤ q − 1 it holds that 1− x/q ≥ q−x/(q−1).
Proof. Consider the function F (x) = 1 − x/q − q−x/(q−1). It is easy to see that

F (0) = F (q − 1) = 0 and that the second derivative of F is always negative. It
immediately follows that F ≥ 0 for 0 ≤ x ≤ q − 1.

3.2. Density Hales–Jewett theorem. We will need to use the following ver-
sion of the density Hales–Jewett theorem. The theorem was first proved by Fursten-
berg and Katznelson [FK91]. A more recent proof with explicit bounds on the density
parameters was obtained in [Pol09].

Before stating the theorem we need to define the notion of a combinatorial line.
Let Σ = {a1, . . . , aq} be an alphabet of size q. For example, one can think of Σ as
being Fq. A set L = {v1, . . . , vq} ⊂ Σn is a combinatorial line if we can partition the
coordinates [n] to two disjoint sets [n] = I ∪ J , I ∩ J = ∅ such that the following
hold: (1) For all i ∈ I and k, k′ ∈ [q], (vk)i = (vk′ )i. Namely, for all i ∈ I, the ith
coordinate of all elements in L is fixed. (2) For j ∈ J and k ∈ [q], (vk)j = ak. In
other words, the jth coordinate advances with k.

It is not hard to see that if we set Σ = Fq, then a combinatorial line in Fn
q

corresponds to a set of the form {v + tu | t ∈ Fq}, where v ∈ Fn
q , u ∈ {0, 1}n \ {0̄},

and v, u have disjoint supports. In particular, a combinatorial line in Fn
q is a line in

the geometric sense.
Theorem 3.4 (see [FK91, Pol09]). For any integer q and any 0 < c ∈ R there

exists an integer λq,c such that if n ≥ λq,c, then any set A ⊆ Fn
q , of size |A| ≥ qn/qc,

contains a combinatorial line.
We now state an easy corollary of the theorem. We say that u is the direction of

the line {v + tu | t ∈ Fq}. Notice that, say, 2u is also the direction of the line but
since u and 2u are linearly dependent we ignore this small issue.

Corollary 3.5. Let 1 ≤ t be an integer. If n ≥ λq,c + t − 1, then any set
A ⊆ Fn

q , of size |A| ≥ qn/qc, contains t combinatorial lines whose directions are
linearly independent.

Proof. The proof is by induction on t. For t = 1, Theorem 3.4 implies that A
contains a line and the claim follows.

Assume that we proved the statement for all t′ ≤ t − 1 and consider t′ = t. By
the induction hypothesis we can find t − 1 lines in linearly independent directions
inside A. To simplify notation assume that those directions are e1, . . . , et−1, where
ei ∈ {0, 1}n is zero everywhere except for the ith coordinate (by applying an invertible
linear transformation to A this can be assumed without loss of generality (w.l.o.g.).
By the pigeonhole principle there is some u ∈ Ft−1

q such that the number of elements
v ∈ A that identify with u on their first t− 1 coordinates is large. Namely,

#{v ∈ A | (v1, . . . , vt−1) = u} ≥ |A|/qt−1 ≥ (qn/qc) /qt−1 = qn−t+1/qc.

In other words, the number of elements of A that belong to the (n−t+1)-dimensional
flat

M = {v ∈ Fn
q | (v1, . . . , vt−1) = u}
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is at least |M|/qc. As the dimension ofM is n−t+1 ≥ λq,c, we can apply Theorem 3.4
and get that A ∩M contains a line. It is immediate that the direction of this line is
linearly independent of e1, . . . , et−1.

4. Restrictions to hyperplanes. In this section we will study the behavior of
polynomials when restricted to hyperplanes. Recall that a hyperplane A ⊂ Fn

q is an
(n− 1)-dimensional affine subspace. For each hyperplane there is a linear function L
such that

A = {x | L(x) = 0}.

It will be convenient to express L as L(x) = xk −∑n
i=k+1 αixi − α0, where k is the

first nonzero coefficient in L (the coefficient of xk is not necessarily 1, but scaling L
by a constant does not change the definition of A, so we can assume this w.l.o.g.).
For such an L we will express the restriction of f to A as

f |A = f(x1, . . . , xn)|L=0 = f

(
x1, . . . , xk−1,

n∑
i=k+1

αixi + α0, xk+1, . . . , xn

)
,

since setting L = 0 is equivalent to substituting
∑n

i=k+1 αixi + α0 to xk.

4.1. Canonical monomials. The notion of canonical monomials will play an
important role in our proofs. Intuitively, the reason for defining canonical monomials
is because they decrease in degree on any hyperplane and thus give an extremal
example that is useful to study.

Definition 4.1. A canonical monomial of degree d in m ≤ n variables over Fq

is a monomial
∏m

i=1 x
ei
i such that the following hold: (1)

∑m
i=1 ei = d. (2) For all

1 ≤ i < m, q − q/p ≤ ei < q. (3) If pi ≤p em, then for every j < m, pi + ej > q − 1.
(4) 0 < em < q.

Note that properties (3) and (4) imply property (2), but for clarity we keep all of
them.

The following lemma shows that whenever we have a multivariate polynomial
over Fq there exists an invertible linear transformation A : Fn

q → Fn
q such that f ◦ A

contains a canonical monomial of maximal degree. In fact, we will prove a slightly
stronger property. For that end we will need the following definition.

Definition 4.2 (graded lexicographical order). We denote
∏n

i=1 x
ei
i >m

∏n
i=1 x

ri
i

if
∑n

i=1 ei >
∑n

i=1 ri or if
∑n

i=1 ei =
∑n

i=1 ri and the first i for which ei �= ri satisfies
ei > ri. Note that we consider only monomials in which all individual degrees are
smaller than q (we can reduce the degree of other monomials). The max-monomial
of a polynomial g is the maximal monomial, in this order, appearing in g (with a
nonzero coefficient, of course).

Lemma 4.3. Let f(x1, . . . , xn) be a degree d ≤ n(q − 1) polynomial over Fq. Let

A = argmax
invertible B

max-monomial of (f ◦B)(x1, . . . , xn).

In other words, A : Fn
q → Fn

q is an invertible linear transformation such that the
max-monomial of (f ◦ A) is maximal, in the graded lexicographical order, among all
monomials of all polynomials of the form f ◦ B, for invertible B. Then, the max-
monomial of f ◦A is a canonical monomial of degree d.

First, we will prove Lemma 4.3 for the bivariate case.
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Lemma 4.4. Let f(x1, , x2) be a degree d ≤ n(q − 1) polynomial over Fq. Let

α = argmax
β∈Fq

max-monomial of (f(x1, x2 + βx1)).

Then, the max-monomial of f(x1, x2 + αx1) is a canonical monomial of degree d.

Proof. Assume w.l.o.g. that f ′(x1, x2)
def
= f(x1, x2+αx1) =

∑
e:0≤e,d−e<q αex

e
1x

d−e
2

(we can ignore monomials of degree smaller than d). Let emax be the maximal degree
of x1 in f ′. Consider the monomial containing xemax

1 . Assume toward a contradiction
that there is an i such that pi ≤p d−emax and emax+pi < q. Consider the polynomial
f ′(x1, x2 + zx1). By (3.1) it follows that

f ′(x1, x2 + zx1) ≡p

∑
e:0≤e,d−e<q

αex
e
1

∑
r≤pd−e

(
d− e

r

)
(zx1)

rxd−e−r
2 .

The coefficient of xemax+pi

1 x
d−(emax+pi)
2 in the expression above is equal to∑

r≤emax+pi

αemax+pi−r

(
d− (emax + pi − r)

r

)
zr

= αemax

(
d− emax

pi

)
zp

i

+
∑

r≤emax+pi

r 	=pi

αemax+pi−r

(
d− (emax + pi − r)

r

)
zr,

where some of the binomials
(
d−(emax+pi−r)

r

)
may be zero modulo p. However, by our

choice of pi it follows that the coefficient of zp
i

in the above expression is nonzero.

Hence, since emax + pi < q, the coefficient of xemax+pi

1 x
d−(emax+pi)
2 is a nonzero

polynomial in z. It follows that there is some β �= 0 such that the coefficient of

xemax+pi

1 x
d−(emax+pi)
2 in f ′(x1, x2 + βx1) = f (x1, x2 + (α+ β)x1) is nonzero. This

contradicts our choice of α.
We are now ready to prove Lemma 4.3.
Proof. Indeed, since composition with an invertible transformation does not affect

the degree, the max-monomial of f ◦A is of degree d. Assume that it is the monomial
M =

∏m
i=1 x

ei
i , where e1, . . . , em > 0. If M is not a canonical monomial, then there

must exist j < m and i such that pi ≤p em and ej+pi < q (recall that we consider only
monomials in which all individual degrees are smaller than q). Assume w.l.o.g. that
j = m−1 (note that if such a j exists, then j = m−1 satisfies this property). Consider
the sum of all monomials of degree d in f ◦A that involve only the variables x1, . . . , xm

and that are divisible by
∏m−2

i=1 xei
i . Clearly, the sum is a nonzero polynomial f̃ of

the form

f̃ =

m−2∏
i=1

xei
i · g(xm−1, xm).

Let d′ = em−1 + em. It follows that g is a nonzero bivariate polynomial of degree
d′ whose max-monomial is not canonical. Thus, by Lemma 4.4 there is α ∈ Fq such
that the max-monomial of g(xm−1, xm +αxm−1) is larger than the max-monomial of
g(xm−1, xm). It follows that the max-monomial of f̃(x1, . . . , xm−1, xm + αxm−1) is
larger than M (since we “moved” degree from xm to xm−1). Let A′ = B ◦ A, where
B(v1, . . . , vn) = (v1, . . . , vm−1, vm + αvm−1, vm+1, . . . , vn). It is clear that A′ is an
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invertible transformation and that the sum of all monomials of degree d in f ◦A′ that
involve only the variables x1, . . . , xm and that are divisible by

∏m−2
i=1 xei

i is equal to

f̃(x1, . . . , xm−1, xm + αxm−1). It is also clear that the max-monomial of f ◦ A′ is
equal to the max-monomial of f̃ . This, however, contradicts the choice of A. Hence,
it follows that the max-monomial in f ◦A is a canonical monomial.

4.2. Monotonicity. Here we prove that ρd(f, k) is monotone in k. This is a
simple fact that has an easy proof.

Lemma 4.5. Let k > k′ be two integers and let f : Fn
q → Fq be a function. Then

ρd(f, k) ≥ ρd(f, k
′).

Proof. Consider the following way to randomly sample a k′-dimensional flat:
Choose uniformly at random a k dimension flat A ⊆ Fn

q . Then, choose uniformly at
random a k′-dimensional flat B ⊆ A. We have that

ρd(f, k
′) = Pr

B:dim(B)=k′
[deg(f |B) > d]

= Pr
A:dim(A)=k

[deg(f |A) > d] · Pr
B⊆A:dim(B)=k′

[deg(f |B) > d | deg(f |A) > d]

= ρd(f, k) · Pr
B⊆A:dim(B)=k′

[deg(f |B) > d | deg(f |A) > d]

≤ ρd(f, k).

4.3. Relating different dimensions. The first lemma in this section shows
that if a (k + 1)-variate function f has degree larger than d (when k is not too small
relatively to d), then ρd(f, k) ≥ 1/q. Notice that we need to lower bound k, as, for

example, when k = d/(q−q/p), the degree of x
q−q/p
1 ·· · ··xq−q/p

k decreases by q−q/p on
any subspace. Proposition 1.2 is an (almost) immediate consequence of this lemma.

Lemma 4.6. Let k ≥ (d+ 1)/(q − q/p) and let f : Fk+1
q → Fq have degree larger

than d. Then ρd(f, k) ≥ 1/q.
Proof. Let A be the invertible linear transformation guaranteed by Lemma 4.3.

To simplify notation, assume w.l.o.g. that A is the identity transformation. Let M
be the max-monomial of f . By the choice of A, M is a canonical monomial. Denote
M =

∏m
i=1 x

ei
i , where

∑m
i=1 ei = deg(f) > d. Roughly, we will show that in every

linear function L, we can tweak either the coefficient of xk+1 or the free term so that
deg(f |L=0) = deg(f). This will prove the claim as it will map at most q different
functions to one “good” function. Formally, we analyze two cases.

Case m ≤ k. Notice that if L(xm+1, . . . , xk+1) is a linear function, deg(f |L=0) =∑m
i=1 ei > d. Indeed, M is still a canonical monomial in f |L=0, as L does not involve

x1, . . . , xm. Any other linear transformation has the form (after a possible rescaling)

L = xi − (
∑k+1

j=i+1 αjxj + α0), where 1 ≤ i ≤ m. Given ᾱ = (αi+1, . . . , αk, α0)

consider the function Lᾱ,z(xi, . . . , xk+1) = xi − (
∑k

j=i+1 αjxj + zxk+1 + α0). Note
that L and Lᾱ,z differ only in the coefficient of xk+1. We will show that for any
ᾱ there is β ∈ Fq such that deg(f |Lᾱ,β=0) > d, which is sufficient to establish the
claim. To ease notation and w.l.o.g., assume that i = 1. Namely, Lᾱ,z(x1, . . . , xk+1) =

x1−(
∑k

j=2 αjxj+zxk+1+α0). Observe that the function f |Lᾱ,z=0 has the same degree

as f(
∑k

j=2 αjxj + zxk+1 +α0, x2, . . . , xk+1) when both are considered as polynomials
in x2, . . . , xk+1.

Let f̃ be the sum of all monomials, of maximal degree in f , that involve only
the variables x1, . . . , xm. Clearly M is such a monomial, and therefore f̃ is not zero.
Let emax be the maximal degree of x1 in f̃ . As M is a max-monomial we have that
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emax = e1. We can express f̃ as

f̃ = xemax
1 · hemax(x2, . . . , xm) +

∑
e<emax

xe
1 · he(x2, . . . , xm),

where hemax �= 0. Let f̂ be such that f = f̃ + f̂ . Hence, f(
∑k

j=2 αjxj + zxk+1 +

α0, x2, . . . , xk+1) = f̃(
∑k

j=2 αjxj+zxk+1+α0, x2, . . . , xk+1)+ f̂(
∑k

j=2 αjxj+zxk+1+

α0, x2, . . . , xk+1). Consider all monomials of degree deg(f) in f(
∑k

j=2 αjxj +zxk+1+
α0, x2, . . . , xk+1) that have degree exactly emax in both z and xk+1 and that involve,
besides z and xk+1, only the variables x2, . . . , xm. Notice that the sum of those
monomials is exactly zemaxxemax

k+1 hemax(x2, . . . , xm). Furthermore,

deg(xemax

k+1 hemax(x2, . . . , xm)) = deg(xemax
1 hemax(x2, . . . , xm)) = deg(f̃) = deg(f).

Thus, if we look at all monomials (in x2, . . . , xk+1) of maximal degree in f(
∑k

j=2 αjxj+
zxk+1 + α0, x2, . . . , xk+1) and think of their coefficients as polynomials in z, then at
least one of those monomials, call it M ′, has a coefficient which is a nonzero poly-
nomial in z. Hence, there is some value β ∈ Fq such that if we substitute z = β,
then the coefficient of M ′ will not be zero. In particular, deg(f |Lᾱ,β=0) = deg(f), as
required. This completes the proof of this case.

Case m = k + 1. The analysis of this case is of a similar spirit to that of the
previous case, only now we show that, with high probability, the degree cannot go
down by too much. Again we consider M =

∏k+1
i=1 xei

i . By the choice of A it follows
that e1 ≥ e2 ≥ · · · ≥ ek+1. For this case we will focus only on linear functions
that are supported on xk+1. Given ᾱ = (α1, . . . , αk) consider the linear function

Lᾱ,z =
∑k

i=1 αixi − xk+1 + z (we consider the case that the coefficient of xk+1 is −1,

but the analysis of other cases is the same). Consider the coefficient of
∏k

i=1 x
ei
i in

f(x1, . . . , xk,
∑k

i=1 αixi+ z). It is not hard to see that this coefficient is a polynomial
of degree ek+1 in z. Thus, there are at least q−ek+1 values of z for which the coefficient

of
∏k

i=1 x
ei
i in f |Lᾱ,z=0 is nonzero. Thus, there are at least q − ek+1 values of z for

which deg(f |Lᾱ,z=0) ≥ e1 + · · ·+ ek ≥ k(q − q/p) ≥ d+ 1. Thus the probability that

Lᾱ,z is “good” is at least
q−1
q · q−ek+1

q , where the first multiplicand comes from choosing
a nonzero coefficient for xk+1 and the second comes from picking z. We consider two
cases. If ek+1 < q−1, then the probability is at least q−1

q · q−ek+1

q ≥ 2(q−1)/q2 ≥ 1/q.
On the other hand, if ek+1 = q − 1, then we also have e1 = · · · = ek+1 = q − 1, and
thus deg(f) = (k + 1)(q − 1). In this case, however, it is not hard to show, using

similar arguments, that for any nonzero linear function L =
∑k+1

i=1 αixi + z there is
a choice of z such that deg(f |L=0) = deg(f) − (q − 1) = k(q − 1) ≥ d + 1. Thus, in
this case as well we get that with probability at least 1/q the function L is such that
deg(F |L=0) > d.

This completes the proof of the lemma.
We now use this lemma iteratively to obtain the following.
Lemma 4.7. Let n ≥ k ≥ (d + 1)/(q − q/p) and let f : Fn

q → Fq have degree

larger than d. Then ρd(f, k) ≥ q−(n−k). Moreover, if n ≥ k′ ≥ k, then ρd(f, k) ≥
ρd(f, k

′) · q−(k′−k).
Proof. The proof follows immediately from Lemma 4.6 by induction on n. For

n = k the result is trivial, as deg(f) > d, and hence ρd(f, n) = 1. So assume that
n ≥ k+1. Consider the following way for sampling a random k-dimensional flat. First
we choose at random a hyperplane A and then we choose a random k-dimensional
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flat B ⊆ A. By Lemma 4.6 the probability that f |A has degree larger than d is at
least 1/q. Conditioning on deg(f |A) > d we get by the induction hypothesis that
PrB[deg((f |A)|B) > d] ≥ q−((n−1)−k) = q · q−(n−k). Thus, ρd(f, k) ≥ ρd(f, n− 1) · (q ·
q−(n−k)) ≥ q−(n−k).

To prove the “moreover” part we use a similar argument. Let A be a random
k′-dimensional flat and let B ⊆ A be a random k-flat. The probability that f |A has
degree larger than d is exactly ρd(f, k

′). Conditioning on this event, we get by the first
part of the claim that ρd(f |A, k) ≥ q−(k′−k). Combining the two results we obtain
ρd(f, k) ≥ ρd(f, k

′) · q−(k′−k).
We now give the proof of Proposition 1.2.
Proof of Proposition 1.2. The fact that tq,d ≤ �(d+ 1)/(q − q/p)	 follows easily

from Lemma 4.6. To see that tq,d ≥ �(d+ 1)/(q − q/p)	 let t = �(d+ 1)/(q − q/p)	.
Consider the function f(x1, . . . , xt) =

∏t
i=1 x

q−q/p
i . Observe that f has degree t(q −

q/p) ≥ d + 1 but when we restrict f to any (t − 1)-dimensional affine subspace its
degree drops to at most (t− 1)(q− q/p) ≤ d (it is not hard to check that the smallest
decrease in degree is obtained for some substitution of the form xi = α). Thus, the
testing dimension is at least t.

4.4. The case of polynomials of degree d+1. In this section we show that
the number of hyperplanes on which a degree d polynomial has degree at most d− 1

is not too large; namely, it is at most N0(q, d) ≤ N̂0(q, d)
def
= q� d−q/p

q−q/p �+1. Observe that

qtq,d − 1 < N0(q, d) ≤ N̂0(q, d) = q� d−q/p
q−q/p �+1 < qtq,d+1.

As a first step we will bound the number of such hyperplanes that “depend” on
x1.

Lemma 4.8. Let f be a polynomial of degree d. Assume that f has a monomial
of degree d that contains x1 and at most t− 1 other variables. Then there are at most
(q − 1)qt−1 linear functions L of the form L(x1, . . . , xn) = x1 +

∑n
i=2 αixi + α0 such

that deg(f |L=0) ≤ d− 1.
In other words, if the minimal number of variables that appear with x1 in a

monomial of degree d in f is t− 1, then there are at most (q− 1)qt−1 linear functions
that depend on x1 such that the degree of f decreases on the hyperplanes defined by
them. The proof is similar in spirit to the proof of Lemma 4.6. We basically show that
after fixing some coefficients in a linear function, the number of completions to linear
functions L that have those fixed coefficients and such that deg(f |L=0) < deg(f) is
small.

Proof. Consider all monomials of degree d in f that involve x1 and contain at
most t − 1 other variables. By our assumption, there is at least one such monomial.
Let emax be the maximal degree of x1 in those monomials. W.l.o.g. assume that
M = xemax

1 ·∏t
i=2 x

ei
i is such a monomial in f . For a linear function L(x1 . . . , xn) =

x1 +
∑n

i=2 αixi + α0 denote L0(x2 . . . , xt) = −(
∑t

i=2 αixi) and L1(xt+1, . . . , xn) =
−(
∑n

i=t+1 αixi + α0). Clearly, L = x1 − (L0 + L1). We would like to “fix” L0 and
count how many different L1 are there so that the degree of f decreases when we set
L = 0.

Consider the polynomial g(x1, . . . , xn) = f(x1 + L0, x2, . . . , xn). Notice that

g|x1−L1=0 = g(L1, x2, . . . , xn) = f(L1 + L0, x2, . . . , xn) = f |x1=L0+L1 = f |L=0.

Furthermore, observe that M also appears in g (because it is of maximal degree in
x1 among all monomials with only t variables). We now express g as a polynomial in
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x2, . . . , xt with coefficients in Fq[x1, xt+1, . . . , xn]. Namely,

g(x1, . . . , xn) =
∑

r̄∈{0,...,q−1}t−1

(
t∏

i=2

xri
i

)
· gr̄(x1, xt+1, . . . , xn).

As L1 does not involve any variable among x2, . . . , xt it holds that

deg(g|x1−L1=0) < d ⇐⇒ deg(g|x1=L1) < d ⇐⇒ ∀r̄ deg(gr̄|x1=L1) < d−
t∑

i=1

ri.

Let ē = (e2, . . . , et). Consider gē, recalling that the monomial M = xemax
1 ·∏t

i=2 x
ei
i

appears in g. In particular, deg(gē) = deg(xemax
1 ) = emax ≤ q − 1. Thus, if

deg(g|x1−L1=0) < d, then it must be the case that

deg(gē|x1−L1=0) < emax ≤ q − 1.

Consider the homogeneous part of degree emax of gē, denoted by g
(emax)
ē . It clearly

contains xemax
1 as a monomial. Observe further that deg(gē|x1=L1) < emax ⇐⇒

deg(g
(emax)
ē |x1=L1) < emax. However, since g

(emax)
ē is homogeneous of degree strictly

smaller than q, this happens if and only if g
(emax)
ē |x1=L1 = 0. Indeed, substituting a

linear function to a homogeneous polynomial of degree D < q either makes it zero

or does not affect its degree. However, since deg(g
(emax)
ē ) ≤ q − 1, this means that if

we think of it as a polynomial in x1 with coefficients in Fq[xt+1, . . . , xn], then it has
L1 ∈ Fq[xt+1, . . . , xn] as a root. In particular, there are at most q − 1 different L1’s

that are roots of g
(emax)
ē .

Concluding, we just proved that for every L0 there are at most q−1 different L1’s
such that deg(f |x1−L0−L1=0) < d. Hence, there are at most (q − 1) · qt−1 different
linear functions L involving x1 such that deg(f |L=0) < d, as required.

The following lemma extends the argument to functions that do not necessarily
depend on x1.

Lemma 4.9. Let f be a polynomial that has a max-monomial containing only
t variables. Then there are at most qt linear functions L such that deg(f |L=0) ≤
deg(f)− 1.

Proof. The proof is by induction on t. The case t = 0 is trivial. Assume that we
proved it for t− 1 and let f be a degree d polynomial that contains a max-monomial
with t variables. Assume w.l.o.g. that the monomial is M =

∏t
i=1 x

ei
i . Lemma 4.8

implies that there are at most (q− 1) · qt−1 linear functions L, involving x1, such that
deg(f |L=0) < d.

We now bound the number of linear functions that decrease the degree of f
and that do not involve x1. For that end, express f as a polynomial in x1, f =∑q−1

e=0 x
e
1ge(x2, . . . , xn). As before, we have that deg(f |L=0) < d if and only if for all

0 ≤ e ≤ q − 1, deg(ge|L=0) < d− e. In particular for g = ge1 , where e1 is the degree
of x1 in M , it must be the case that deg(g|L=0) < d− e1.

At this point we use the fact that ge1 has a max-monomial with only t−1 variables,
M1 =

∏t
i=2 x

ei
i , and conclude from the induction hypothesis that the number of linear

functions L such that deg(ge1 |L=0) < deg(ge1) is at most qt−1. Hence, overall there are
at most (q−1)·qt−1+qt−1 = qt linear functions L such that deg(f |L=0) < deg(f).

We are now ready to prove Theorem 1.5. For the sake of readability we repeat it
here (in a slightly different form).
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Theorem 1.5 restated. Let f : Fn
q → Fq be a polynomial of degree d. Then

there are at most N̂0(q, d) = q� d−q/p
q−q/p �+1 linear functions L such that deg(f |L=0) < d.

In particular, N0(q, d) ≤ N̂0(q, d).
Proof. Notice that it is enough to prove the theorem for the polynomial f ◦ A

where A : Fn
q → Fn

q is an invertible linear transformation. Let A be the linear
transformation guaranteed by Lemma 4.3. Namely, it is such that f ◦ A contains
a canonical monomial. To simplify notation we assume from now on that f has a
canonical monomial. Let M =

∏t
i=1 x

ei
i be some canonical monomial in f . Since

M is a canonical monomial, it must be the case that et−1 + et ≥ q. Therefore,
d =

∑t
i=1 ei = (e1 + · · · + et−2) + (et−1 + et) ≥ (t − 2)(q − q/p) + q, and hence

t ≤ d−q
q−q/p +2 = d−q/p

q−q/p +1. Since t is an integer, we actually get that t ≤ �d−q/p
q−q/p �+1.

Invoking Lemma 4.9 we conclude that there are at most qt ≤ q� d−q/p
q−q/p �+1 = N̂0(q, d)

linear functions L such that deg(f |L=0) < d.
Corollary 4.10. Let n, d, q,K be integers such that K > N0(q, d). Let f be

an n-variate polynomial of degree at most d over Fq. If there exist K hyperplanes
A1, . . . , AK such that for all i ∈ [K], deg f |Ai ≤ d′ < d, then deg f ≤ d′.

Proof. Assume for contradiction that d′ < deg(f) = d̃ ≤ d. Then, by Theorem 1.5
there are at most N0(q, d̃) ≤ N0(q, d) < K hyperplanes A on which deg(f |A) < d̃.
This contradicts our assumption that there are at least K hyperplanes {Ai} on which
deg(f |Ai) ≤ d′.

4.5. Interpolating from exact agreement. In this section we prove Theo-
rem 1.7, which shows that if we have enough “pairwise consistent” polynomials, then
it is possible to obtain “global” consistency. We first restate the theorem.

Theorem 1.7 restated. Let A1, . . . , AK be distinct hyperplanes in Fn
q and

P1, . . . , PK be polynomials of degree d satisfying Pi|Ai∩Aj = Pj |Ai∩Aj for every pair
i, j ∈ [K]. If

K ≥ N̂1(q, d)
def
=2N̂0(q, d+ q) · qλq,6 = 2q� d

q−q/p �+2+λq,6 ,

where λq,6 is the constant λq,c from Theorem 3.4 for c = 6, then there exists a poly-
nomial Q, of degree d, such that Q|Ai = Pi|Ai for every i ∈ [K].

Proof. In fact, we prove a slightly stronger statement. Specifically, we show that
the conclusion holds when

K ≥ Ñ1(q, d, n)
def
=

N̂1(q, d)

2
∏n−logq

̂N1(q,d)−3

i=1

(
1− ̂N1(q,d)

qn−i−1

) .

This is indeed a stronger statement than the denominator above:

2

n−logq
̂N1(q,d)−3∏
i=1

(
1− N̂1(q, d)

qn−i−1

)
≥ 2

⎛⎝1−
n−logq

̂N1(q,d)−3∑
i=1

N̂1(q, d)

qn−i−1

⎞⎠
= 2− 2N̂1(q, d)

qn−1

n−logq
̂N1(q,d)−3∑
i=1

qi > 2− 2N̂1(q, d)

qn−1
qn−logq

̂N1(q,d)−2 = 2− 2q−1 ≥ 1;

namely, Ñ1(q, d, n) < N̂1(q, d) for all n, and so the requirement on K is weaker.
We first set some notation. Let Li ∈ Affn

q be an affine linear function such that

Ai =
{
u ∈ Fn

q | Li(u) = 0
}
. For the rest of the proof we denote L = {L1, . . . , LK}.
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We will abuse notation and denote, for L ∈ L, PL = Pi and AL = Ai when L = Li.
Another important notation is the following. For L ∈ Affn

q and γ ∈ Fq we denote

BL,γ
def
=
{
v ∈ Fn

q | L(v) = γ
}

and Ai,L,γ
def
=Ai ∩BL,γ .

Note that for γ1, γ2, the hyperplanes BL,γ1 and BL,γ2 are shifts of each other (they
can also be empty sets if L is a constant function).

The proof is by induction on the number of variables n. The idea of the proof
is to find a linear function L and restrict our attention to the different hyperplanes
BL,γ . We show that we can find an L such that the induction assumption holds for
every BL,γ . By the induction hypothesis, for each BL,γ there is a polynomial Pγ , of
degree d, that is defined over BL,γ and is consistent there with the Pi’s. Then we
“glue” the Pγ ’s together and use Theorem 1.5 to claim that the resulting polynomial
has degree d. This is indeed the idea, but what is swept under the rug here is the base
case, which is technically challenging. The base of the induction for us is the case
n < logq N̂1(q, d) + 4. For such n it holds that Ñ1(q, d, n) =

1
2N̂1(q, d). The analysis

of this case, which is the technical heart of the proof, is given in the next lemma.
Lemma 4.11 (main lemma). Let n < logq N̂1(q, d) + 4 and K ≥ Ñ1(q, d, n) =

N̂1(q, d)/2. Let A1, . . . , AK be distinct hyperplanes in Fn
q and let P1, . . . , PK be poly-

nomials of degree d satisfying Pi|Ai∩Aj = Pj |Ai∩Aj for every i, j ∈ [K]. Then there
exists a degree d polynomial P such that for every i ∈ [K], P |Ai = Pi.

We defer the proof of Lemma 4.11 and continue with the proof of the theorem.
As Lemma 4.11 takes care of the case n < logq N̂1(q, d) + 4 we assume for the rest

of the proof that n ≥ logq N̂1(q, d) + 4. The following lemma shows that we can find
a hyperplane such that if we restrict our attention to any coset of that hyperplane,
then the induction assumption continues to hold.

Claim 4.12. There is a linear function L ∈ Affn
q such that for every γ ∈ Fq, the

number of distinct affine subspaces Ai,L,γ ⊆ BL,γ, such that Ai,L,γ �= ∅, is at least

Ñ1(q, d, n− 1).
Note that this claim is not trivially true, as different hyperplanes may have the

same intersection with BL,γ .

Proof. It is clearly sufficient to prove the claim for K such that Ñ1(q, d, n) ≤
K ≤ N̂1(q, d). Observe that Ai ∩ BL,γ = Aj ∩ BL,γ , for linearly independent Li and
Lj, only if there are α, β ∈ F∗

q such that L = αLi + βLj + γ. Further, observe that
Ai ∩ BL,γ = ∅ only if L = αLi + γ′ for some α ∈ F∗

q and γ′ ∈ Fq. Using these two
observations we perform a simple counting argument that shows that there is some
L ∈ Affn

q such that for every γ, the number of distinct Ai∩BL,γ , which are not empty,
is as required.

Clearly, there are exactly qn+1 affine linear functions over Fn
q . For each affine

linear function L consider the number of ways that L can be represented as L =
αL1 + βL2 + γ, where2 α, β, γ ∈ Fq and L1, L2 ∈ L. Since there are q3K2 such
possible representations, there exists L ∈ Affn

q that can be represented in at most
q3K2

qn+1 = K2

qn−2 different ways.

It follows that for the L that we found and any γ ∈ Fq, there are at least K ′ =
K − K2

qn−2 different nonempty flats of the form Ai ∩ BL,γ . Indeed, for every such
representation of L we throw away one of the functions in the representation. As L

2We could have taken α, β ∈ F∗
q , but we use this counting to also include the case that L is a

shift of some Li.
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cannot be represented using the remaining functions, we get the desired bound on K ′.
Calculating we get

K ′ = K − K2

qn−2
= K

(
1− K

qn−2

)
≥ Ñ1(q, d, n)

(
1− N̂1(q, d)

qn−2

)
(using Ñ1(q, d, n) ≤ K ≤ N̂1(q, d))

=

(
1− N̂1(q, d)

qn−2

)
N̂1(q, d)

2
∏n−logq

̂N1(q,d)−3

i=1

(
1− ̂N1(q,d)

qn−i−1

)
=

N̂1(q, d)

2
∏n−logq

̂N1(q,d)−3

i=2

(
1− ̂N1(q,d)

qn−i−1

)
=

N̂1(q, d)

2
∏n−logq

̂N1(q,d)−4

i=1

(
1− ̂N1(q,d)

qn−i−2

)
= Ñ1(q, d, n− 1).

We proceed with the proof of Theorem 1.7. Let L ∈ Affn
q be as promised by Claim

4.12. Notice that L cannot be the constant function, as each constant function has at

most K2 > K2

qn−2 different representations. Fix γ ∈ Fq and let A′
i = Ai,L,γ = Ai∩BL,γ

and P ′
i = Pi|A′

i
for i ∈ [K]. It follows, by the choice of L, that the A′

i and P ′
i satisfy

the inductive assumption (as there are at least Ñ1(q, d, n−1) distinct A′
i). Hence, the

induction hypothesis implies that there is a polynomial of degree d, PL=γ , such that
PL=γ |A′

i
= P ′

i |A′
i
for every i ∈ [K].

We are not done yet, as we may have a different polynomial for every γ ∈ Fq. So
now we show that by combining the different PL=γ we get a degree d polynomial P
that is consistent with P1, . . . , Pk. Define

P (x)
def
=
∑
γ∈Fq

⎛⎝∏
α	=γ

L(x)− α

γ − α

⎞⎠ · PL=γ(x).

By construction, the degree of P is at most d + q − 1. It is easy to verify that for
any γ ∈ Fq, P agrees with PL=γ on BL,γ =

{
v ∈ Fn

q | L(v) = γ
}
. As the hyperplanes

{BL,γ}γ∈Fq
cover all of Fn

q , it follows that for every i ∈ [K] and u ∈ Ai, P (u) = Pi(u).

Indeed, if we let γ = L(u), then Pi(u) = PL=γ(u) = P (u), where the first equality
holds, since, by the induction hypothesis, Pi and PL=γ agree on A′

i = Ai ∩BL,γ .
We are still not done, as we showed only that deg(P ) ≤ d+ q − 1. However, as

K ≥ Ñ1(q, d, n) = N̂1(q, d)/2 > N̂0(q, d+ q) ≥ N0(q, d+ q),

Corollary 4.10 implies that the degree of P is, in fact, at most d. This completes the
proof of Theorem 1.7 modulo the proof of Lemma 4.11 that we give next.

Proof of Lemma 4.11. As before, we let Li ∈ Affn
q be an affine linear function

such that Ai =
{
u ∈ Fn

q | Li(u) = 0
}
and denote L = {L1, . . . , LK}. Again we abuse

notation and denote, for L ∈ L, PL = Pi and AL = Ai when L = Li.
We will first use the assumption that n ≤ logq N̂1(q, d)+4 and K ≥ Ñ1(q, d, n) =

N̂1(q, d)/2 = N̂0(q, d+q)·qλq,6 to show that the set L contains at least logq(N̂0(q, d+q))
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lines in linearly independent directions. Indeed, we can think of L as a set of points
in Affn

q which is an (n+ 1)-dimensional space over Fq. By our setting of parameters
it follows that

|L|
|Affn

q |
=

K

qn+1
≥ K

qlogq
̂N1(q,d)+5

=
K

N1(q, d)
· q−5 ≥ q−6.

Thus, in order to apply Corollary 3.5 we need only bound dim(Affn
q ) from below. As

we have K different hyperplanes over Fn
q it must be the case that logq(K) ≤ n + 1.

Therefore,

dim(Affn
q ) = n+ 1 ≥ logq(K) ≥

⌊
d

q − q/p

⌋
+ 2 + λq,6 =

⌊
d+ q − q/p

q − q/p

⌋
+ 1 + λq,6.

Corollary 3.5 now implies that there are at least �d+q−q/p
q−q/p � + 2 combinatorial lines

inside L whose directions are linearly independent. In particular, there are

(4.1) t ≥
⌊
d+ q − q/p

q − q/p

⌋
+ 1

such lines, so their direction is not a constant linear function. By applying an invertible
linear transformation, we can assume w.l.o.g. that those directions are the linear
functions x1, . . . , xt. In other words, we can assume that there exist t linear functions
L1, . . . , Lt such that for any i ∈ [t] and α ∈ Fq, the linear function Li − αxi belongs
to L. Intuitively, the line whose direction is x1 is depicted in Figure 1 at the end of
the section 2.

We will use these lines to construct a polynomial P , of degree d, that is consistent
with P1, . . . , PK .

The construction of P is done in three steps. First we construct, for every i ∈ [t]

and γ ∈ F∗
q , a polynomial Pxi=γ defined on the hyperplane Bxi,γ

def
=
{
v ∈ Fn

q | vi = γ
}

and consistent with all the Pj ’s. In the second step we construct, for every i ∈
[t], a polynomial Pxi 	=0, over the set ∪γ 	=0Bxi,γ =

{
v ∈ Fn

q | vi �= 0
}
, by a simple

interpolation of
{
Pxi=γ | γ ∈ F∗

q

}
. The last step consists of combining the different

{Pxi 	=0}i∈[t] to a single polynomial P .

Step 1. Fix i ∈ [t] and γ ∈ F∗
q . Denote

Pxi=γ
def
=
∑
β∈Fq

⎛⎝∏
α	=β

Li − α

β − α

⎞⎠ · PLi−γ−1βxi
.

Clearly, P is a polynomial of degree at most d+ q − 1. We now show that Pxi=γ is a
polynomial of degree at most d which is consistent with {P1, . . . , PK} on Bxi,γ . Fix
j ∈ [K] and u ∈ Aj ∩Bxi,γ . In particular, ui = γ. Let β′ = Li(u). We have

Pxi=γ(u) =
∑
β∈Fq

⎛⎝∏
α	=β

Li(u)− α

β − α

⎞⎠ · PLi−γ−1βxi
(u)

=
∑
β∈Fq

⎛⎝∏
α	=β

β′ − α

β − α

⎞⎠ · PLi−γ−1βxi
(u)

=

⎛⎝∏
α	=β′

β′ − α

β′ − α

⎞⎠ · PLi−γ−1β′xi
(u) = PLi−γ−1β′xi

(u) =(∗) Pj(u),
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where (∗) follows from the fact that

Li(u)− γ−1β′ui = Li(u)− γ−1β′γ = Li(u)− β′ = 0.

Indeed, this implies that u ∈ ALi(u)−γ−1β′xi
and now (∗) follows, as PLi−γ−1β′xi

and
Pj agree on u ∈ Aj ∩ ALi−γ−1β′xi

(recall that for any i ∈ [t] and α ∈ Fq the linear
function Li −αxi belongs to L). To conclude, Pxi=γ is a degree d+ q− 1 polynomial
that agrees with degree d polynomials on at least K > N0(q, d + q) flats. Corollary
4.10 now implies that deg(Pxi=γ) ≤ d on Bxi,γ . The same argument also shows that
{Pxi=γ}i∈[t],γ∈F∗

q
are consistent with each other.

Step 2. Fix i ∈ [t]. Denote

Pxi 	=0
def
=
∑
γ∈F∗

q

⎛⎝ ∏
α∈F∗

q\{γ}

xi − α

γ − α

⎞⎠ · Pxi=γ .

By construction, Pxi 	=0, is a polynomial of degree at most d + q − 2 (recall α ∈
F∗
q \ {γ}). It is not hard to verify that Pxi 	=0 is consistent with P1, . . . , Pk on the

set
{
v ∈ Fn

q | vi �= 0
}
. Moreover, {Pxi 	=0}ti=1 are consistent with each other. In other

words, for every v = (v1, . . . , vn) ∈ Fn
q such that vi, vj �= 0, the polynomials Pxi 	=0

and Pxj 	=0 satisfy Pxi 	=0(v) = Pxj 	=0(v). Indeed, this follows immediately from the
consistency of {Pxi=γ}i∈[t],γ∈F∗

q
among themselves.

Step 3. This step is slightly more involved than the first two steps. Intuitively,
we will show that if a monomial M appears in both Pxi 	=0 and Pxj 	=0, then it has the
same coefficient in both. Hence, we can construct a unique polynomial P as the sum
of all monomials, with the appropriate coefficients, that appear in any of the Pxi 	=0.
While this is indeed the argument, for the proof we will need to work with a slightly
less natural basis for the space of polynomials.

For a degree 0 ≤ e ≤ q − 1 define

Me(xi)
def
=

⎧⎪⎨⎪⎩
1, e = 0,

xe
i , e �= 0, q − 1,

xq−1
i − 1, e = q − 1.

Notice that M0(xi), . . . ,Mq−1(xi) form a basis to the space of polynomials in xi. For
ē = (e1, . . . , en), 0 ≤ e1, . . . , en ≤ q − 1, define the ē-monomial3 Mē(x) to be

Mē(x)
def
=

n∏
i=1

Mei(xi).

Clearly, deg(Mē) =
∑n

i=1 ei. We say that Mē is of full degree in xi if ei = q − 1.
As with the standard basis, it is not hard to see that every f : Fn

q → Fq has a
unique representation as f(x) =

∑
cēMē(x), where cē ∈ Fq. We will rely heavily on

this simple fact in the rest of the proof. The next lemma gives some motivation for
working with this less ordinary basis.

3We use ē-monomials to denote monomials in the new basis. Note that in the standard basis, an
ē-monomial may have more than one monomial.
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Lemma 4.13. Let I ⊆ [n] be a set of indices. Denote SI =
{
v ∈ Fn

q | ∀i ∈
I : vi �= 0

}
. Let g, h : Fn

q → Fq be two polynomials that agree on SI ; namely, for all
v ∈ SI , g(v) = h(v). Then, the coefficient of any ē-monomial M that is not of full
degree in any xi for i ∈ I is the same in both g and h.

Proof. Consider f = g − h. Clearly, f(v) = 0 for all v ∈ SI . We will show that
when we represent f in our basis, it holds that f =

∑
i∈I(x

q−1
i −1)fi. The lemma will

immediately follow by uniqueness of representation, as any monomial in f = g − h
has full degree in some xi for i ∈ I.

The claim above follows from a standard counting argument. First, the number
of functions that vanish on SI is equal to the number of functions over Fn

q \SI , which
is

q|F
n
q \SI | = q|{v∈Fn

q |∃i∈I|vi=0}|.

Second, let us count the number of polynomials of the form∑
ē: ∃i∈I s.t. ei=q−1

cēMē(x).

This number is equal to q|{ē|∃i∈I, ei=q−1}|. Clearly,

#
{
v ∈ Fn

q | ∃i ∈ I, vi = 0
}
= # {ē ∈ {0, . . . , q − 1}n | ∃i ∈ I, ei = q − 1} .

Hence, the number of functions that vanish on SI is exactly the same as the number of
polynomials of the form

∑
ē:∃i∈I,ei=q−1 cēMē(x). Furthermore, any such polynomial∑

ē:∃i∈I,ei=q−1 cēMē(x) vanishes on SI . By uniqueness of representation it follows that
any f that vanishes on SI is a polynomial of the form

∑
ē:∃i∈I,ei=q−1 cēMē(x).

We continue with the proof of Lemma 4.11. By uniqueness of representation, for
any m ∈ [t], Pxm 	=0 can be expressed as

Pxm 	=0(x)
def
=
∑
J⊆[t]

Qm
J (x)

∏
i∈J

(xq−1
i − 1),

where, for any J ⊆ [t] and m ∈ [t], the polynomial Qm
J contains only xi’s for i �∈ J

and is not of full degree in any variable xi, i ∈ [t]. Moreover, we note that deg(Qm
J ) ≤

deg(Pxm 	=0)− (q − 1)|J |. Our next goal is showing Qk
J = Qm

J for any k,m ∈ [t] \ J .
Claim 4.14. For every k,m /∈ J it holds that Qk

J = Qm
J .

Proof. Recall that Pxk 	=0 and Pxm 	=0 agree on
{
v ∈ Fn

q | vk, vm �= 0
}
. Lemma 4.13

implies that they have the same coefficient for any ē-monomial which is not of full
degree in either xk or xm. In other words,∑

J⊆[t]\{k,m}
Qk

J

∏
i∈J

(xq−1
i − 1) =

∑
J⊆[t]\{k,m}

Qm
J

∏
i∈J

(xq−1
i − 1).

The result now follows from uniqueness of representation.
We continue with the proof of the main lemma. For every J � [t] define QJ = Qm

J ,
where m ∈ [t] \ J is arbitrary. By Claim 4.14, QJ is well defined. Now we can define
a polynomial P that is consistent with {P1, . . . , PK} on all of Fn

q :

P
def
=

∑
J�[t]

QJ

∏
i∈J

(xq−1
i − 1).
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We first show that deg(P ) ≤ d + q − 2. Indeed, for J � [t] let m ∈ [t] \ J . Since
QJ = Qm

J , it follows that

deg

(
QJ

∏
i∈J

(xq−1
i − 1)

)
= deg

(
Qm

J

∏
i∈J

(xq−1
i − 1)

)
≤ deg(Pxm 	=0) ≤ d+ q − 2.

As this holds for every J � [t] we get that deg(P ) ≤ d + q − 2. Later we will show
that deg(P ) = d, but first we show that P is consistent with the Pi’s.

Claim 4.15. Every k ∈ [K] and every u ∈ Ak satisfy P (u) = Pk(u).
Proof. We will first prove the claim when for some m ∈ [t], um �= 0. For such u,

uq−1
m − 1 = 0. Therefore,

P (u) =
∑
J�[t]

QJ

∏
i∈J

(uq−1
i − 1)

=
∑

J⊆[t]\{m}
QJ

∏
i∈J

(uq−1
i − 1) =

∑
J⊆[t]\{m}

Qm
J

∏
i∈J

(uq−1
i − 1)

=
∑
J⊆[t]

Qm
J

∏
i∈J

(uq−1
i − 1) = Pxm 	=0(u) = Pk(u),

where in the last equality we used the consistency of Pxm 	=0 and Pk on Ak. It remains
to show that P (u) = Pk(u) for u such that (u1, . . . , ut) = (0, . . . , 0). Assume for a

contradiction that this is not the case. In other words, there is v ∈ F
[n]\[t]
q such that

P (0, v) �= Pk(0, v). Denote α = P (0, v)− Pk(0, v) �= 0. We have that

(P − Pk) (x, v) =

{
0, x �= (0, . . . , 0),

α, x = (0, . . . , 0).

Hence, as a polynomial in x1, . . . , xt,

(P − Pk) (x, v) = α
∏
i∈t

(
1− xq−1

i

)
.

Therefore,

deg(P − Pk)(x, v) = (q − 1)t ≥ (q − 1) ·
(⌊

(d+ q)− q/p

q − q/p

⌋
+ 1

)
≥ (q − 1) ·

(
d

q − q/p
+ 1

)
≥ d+ q − 1,

where the first inequality follows from (4.1). On the other hand,

deg(P − Pk)(x, v) ≤ deg(P − Pk) ≤ max {deg(P ), deg(Pk)} ≤ d+ q − 2,

which is a contradiction. We thus conclude that for every k ∈ [K] and u ∈ Ak,
P (u) = Pk(u).

We finish the proof of Lemma 4.11 by the following observation. P is a polynomial
of degree at most d + q − 2 that is equal to degree d polynomials on at least K >
N0(q, d+ q) hyperplanes. So, by Corollary 4.10, deg(P ) ≤ d, as required.
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4.6. Interpolating from approximate agreement. We use Theorem 1.7 to
prove a version which applies to functions which are close to degree d polynomials.
Specifically, we consider a function f whose restriction on many hyperplanes is close
to some degree d polynomial and show that such a function is close to a degree d
polynomial. This proof is essentially from [BKS+10]; we merely verify that it extends
to general q (using our bounds on N1(q, d)). As a result, the description is terse and
we skip the proof development.

Theorem 4.16. Let δ1 < 1
2q

−(1+d/(q−1)) and K ≥ N1(q, d). If the function
f : Fn

q → Fq and hyperplanes A1, . . . , AK are such that δd(f |Ai) ≤ δ1 for every
i ∈ [K], then δd(f) ≤ 2δ1 + 4(q − 1)/K.

Proof. We prove the theorem in four steps. Let Pi, defined on Ai, denote the
polynomial (which, by Lemma 3.2, is unique on Ai) of degree at most d that satisfies
δ(f |Ai , Pi) ≤ δ1.

First, we claim that for every pair of hyperplanes Ai and Aj , we have Pi|Ai∩Aj =
Pj |Ai∩Aj . If Ai and Aj are parallel, then there is nothing to prove. Else note that |Ai∩
Aj | = 1

q |Ai|, and so δ(f |Ai∩Aj , Pi|Ai∩Aj) ≤ qδ1. Similarly, δ(f |Ai∩Aj , Pj |Ai∩Aj ) ≤ qδ1.

We conclude that δ(Pi|Ai∩Aj , Pj |Ai∩Aj) ≤ 2qδ1 < q−d/(q−1). But since both Pi and
Pj are degree d polynomials on Ai ∩Aj , they must be identical if their distance is so
small (by Lemma 3.2).

Next, we use Theorem 1.7 to claim that there is a degree d polynomial Q that
agrees with all the given Pi’s. Specifically, we have Q|Ai = Pi|Ai for every i ∈
[K]. Note that to use Theorem 1.7, we need K ≥ N1(q, d), which is true from our
hypothesis.

The third claim we make is that there is a large fraction of points that are con-
tained in a noticeable fraction of the K hyperplanes. Specifically, if we say that
x ∈ Fn

q is bad if |{i ∈ [K] | x ∈ Ai}| ≤ K/(2q), then the probability that a uni-
formly chosen x ∈ Fn

q is bad is at most τ = 4(q − 1)/K. To prove this claim, let
x ∈ Fn

q be chosen uniformly at random and let Yi be the indicator random variable
that is 1 if x ∈ Ai and 0 otherwise. Note that we need to show that the probability
that

∑
i Yi ≤ K/(2q) is at most 4(q − 1)/K. Let Zi = Yi − Exp[Yi] = Yi − 1/q.

Clearly, Exp[Z2
i ] = Exp[Y 2

i ] − Exp[Yi]
2 = 1/q − 1/q2. Furthermore, the expectation

of Yi · Yj ≤ 1/q2 (it is zero if the hyperplanes are parallel and 1/q2 otherwise). Thus
we have Exp[Zi ·Zj ] ≤ 0, and so Exp[(

∑
i∈[K] Zi)

2] ≤∑
i Exp[Z

2
i ] = K(q− 1)/q2. We

thus conclude that

Pr

[∑
i

Yi ≤ K/(2q)

]
= Pr

[∑
i

Zi ≤ −K/(2q)

]

≤ Pr

⎡⎣(∑
i

Zi

)2

≥ K2/(2q)2

⎤⎦
≤ 4q2

K2
· K(q − 1)

q2
≤ 4(q − 1)

K
.

Finally, we claim that δ(f,Q) can be bounded by τ+2δ1. To see this, we consider
the following experiment: Pick x ∈ Fn

q and i ∈ [K] uniformly and independently and
consider the event that “x ∈ Ai and f(x) �= Pi(x).” On the one hand, we have
that this event happens with probability at most δ1/q, since probability x ∈ Ai is
exactly 1/q and Prx∈Ai [f(x) �= Pi(x)] ≤ δ1. On the other hand, this probability
can also be seen to be at least (δ(f,Q) − τ)/(2q), since the probability that x is not
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bad and satisfies f(x) �= Q(x) is at least δ(f,Q) − τ and for every x that is not
bad, the probability that Ai � x for random i is at least 1/(2q). The upper bound
δ(f,Q) ≤ 2δ1 + τ follows immediately.

Putting the above claims together we get that if K ≥ N1(q, d) and δ1 <
1
2q

−(1+d/(q−1)), then δd(f) ≤ 2δ1 + 4(q − 1)/K.

5. Analysis of the low-degree tests.
Lemma 5.1. Let t ≥ d/(q − 1) be an integer. Then, if δd(f) ≤ 1

2q
−d/(q−1), then

ρd(f, t) ≥ min{ 1
4q ,

1
2 · qt · δd(f)}.

Proof. We will use the monotonicity of the rejection probability ρd(f, ·)
(Lemma 4.5) and give a lower bound on the rejection probability ρd(f, �) for some
� ≤ t.

Let δ = δd(f) and let g be a polynomial of degree at most d satisfying δ(f, g) = δ.
For every integer �, d/(q − 1) ≤ � ≤ t, we claim that the probability that, on

a randomly chosen �-dimensional affine subspace A, f |A and g|A disagree on exactly
one point is at least q� ·δ ·(1−(q�−1) ·δ). Indeed, the argument is quite routine, so we
only sketch it. Let x be a point on the �-dimensional flat A. Consider the event that
f(x) �= g(x) but f(y) = g(y) for any other y ∈ A. Clearly its probability is at least
Pr[f(x) �= g(x)]−∑

y∈A,y 	=xPr[f(y) �= g(y) and f(x) �= g(x)] = δ − (q� − 1)δ2, where
we have used the fact that the points in A are pairwise independent. Thus, taking
the union bound over all x ∈ A we get that the probability that f and g disagree in
exactly one point is at least q� · δ · (1− (q� − 1) · δ). Note that, in this case, f |A is not
a degree d polynomial, since, by Lemma 3.2, two polynomials cannot differ on only
one point of A.

The fact above allows us to analyze ρd(f, �) as follows: Since the �-dimensional
test rejects whenever it picks an A where f |A and g|A disagree on exactly one point,
we conclude that ρd(f, �) ≥ q� · δ · (1− (q� − 1) · δ).

Now if δ ≤ 1
2q

−t, then we immediately get ρd(f, t) ≥ 1
2 · qt · δ. Else, let � be

the largest integer such that δ ≤ 1
2q

−� (and so δ > 1
2q q

−�). We then get ρd(f, t) ≥
ρd(f, �) ≥ 1

2 ·q� ·δ > 1
4q , as desired, where the second inequality follows by the previous

argument.
Lemma 5.2. For every q, there exist ε > 0 and c such that for every d, t ≥ tq,d+c,

and n, the following hold: Let f : Fn
q → Fq be a function with δd(f) ≥ q−t. Then

ρd(f, t) ≥ ε+ 1
8q

t ·∑∞
i=n+1 q

−i.

Proof. We prove the lemma for ε = 1
32q and c = logq N̂1(q, d) − tq,d + logq 128.

Recall that

N̂1(q, d) = 2N̂0(q, d+ q) · qλq,6 = 2q� d
q−q/p �+2+λq,6

and observe that

2qtq,d+1+λq,6 ≤ 2q� d
q−q/p �+2+λq,6 ≤ 2qtq,d+2+λq,6 ,

where λq,6 is defined in Theorem 3.4, and so c is indeed bounded independent of d.
The proof is by induction on n. For the base case, we use n = t. In this case note

that ρd(f, t) = 1 and
∑∞

i=t+1 q
−i = q−t/(q − 1), and so 1

8 · qt ·∑∞
i=t+1 q

−i < 1
2 and

the lemma holds for every ε ≤ 1
2 .

We nowmove to the inductive case. Let A1, . . . , AK be all the distinct hyperplanes
for which δd(f |Ai) < q−t. If K is small, then we are easily done by induction, since
ρd(f, t) = ExpA[ρd(f |A, t)] and the inductive hypothesis says that ρd(f |A, t) is usually
large. When K is large, we use Theorem 4.16 to show that δd(f) is small, and this
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allows us to use Lemma 5.1 to claim ρd(f, t) is large in this case also. The details are
below.

Case 1: K < 1
8q

t. For a hyperplane A such that δd(f |A) ≥ q−t we have, by the
induction hypothesis, ρd(f |A, t) ≥ ε+ 1

8q
t
∑∞

i=n q
−i. Using the fact that the number of

hyperplanes in Fn
q is at least qn, we get that PrA[δd(f |A) < q−t] ≤ 1

8q
t/qn. Combining

the two we get

ρd(f, t) = ExpA(ρd(f |A, t))

≥ ε+
1

8
qt

∞∑
i=n

q−i − 1

8
qt/qn

= ε+
1

8
qt

∞∑
i=n+1

q−i,

as desired.
Case 2: K ≥ 1

8q
t. Note that

K ≥ 1

8
qt ≥ 1

8
qtq,d+c =

1

8
qlogq

̂N1(q,d)+logq 128 > N̂1(q, d) ≥ N1(q, d).

We thus have by Theorem 4.16, δd(f) ≤ 2q−t +4(q− 1)/K. Using 2q−t ≤ 1
4q

−d/(q−1)

and 4(q − 1)/K ≤ 32 · q−t+1 ≤ 1
4q

−d/(q−1) (by our choice of t ≥ logq N̂1(q, d) +

logq 128 ≥ d/(q− 1) + logq 128+ 1) we conclude in this case that δd(f) ≤ 1
2q

−d/(q−1).

This allows us to use Lemma 5.1 in this case and conclude that ρd(f) ≥ min{ 1
4q ,

1
2 ·

qt ·δd(f)}. It now follows from the choice of parameters that 1
4q ≥ ε+ 1

8q
t
∑∞

i=n+1 q
−i

and 1
2 · qt · δd(f) ≥ 1

2 ≥ ε+ 1
8q

t
∑∞

i=n+1 q
−i.

We now give the proof of our main theorem.
Proof of Theorem 1.3. We analyze two cases depending on δd(f):
1. δd(f) ≤ 1

2q
−d/(q−1): Since tq,d = �(d+1)/(q− q/p)	 ≥ d/(q− 1), we get from

Lemma 5.1 that ρd(f, tq,d) ≥ min{ 1
4q ,

1
2 · qtq,d · δd(f)}.

2. δd(f) > 1
2q

−d/(q−1): In this case we can apply Lemma 5.2 and conclude
that there exist constants c, ε > 0 such that for t = tq,d + c it holds that
ρd(f, t) ≥ ε+ 1

8q
t ·∑∞

i=n+1 q
−i > ε. Applying Lemma 4.7 we obtain that

ρd(f, tq,d) ≥ ρd(f, t) · q−(t−tq,d) ≥ ε · q−c.

Set ε1 = 1/2 and ε2 = min{ 1
4q , ε · q−c}. Note that, by Lemma 5.2, ε2 depends only on

q. Combining the two cases we conclude that

ρd(f, tq,d) ≥ min{ε2, ε1 · qtq,d · δd(f)},
as claimed.
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