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ABSTRACT
In this work we explore error-correcting codes derived from
the“lifting”of“affine-invariant”codes. Affine-invariant codes
are simply linear codes whose coordinates are a vector space
over a field and which are invariant under affine-transformations
of the coordinate space. Lifting takes codes defined over a
vector space of small dimension and lifts them to higher di-
mensions by requiring their restriction to every subspace of
the original dimension to be a codeword of the code being
lifted. While the operation is of interest on its own, this
work focusses on new ranges of parameters that can be ob-
tained by such codes, in the context of local correction and
testing. In particular we present four interesting ranges of
parameters that can be achieved by such lifts, all of which
are new in the context of affine-invariance and some may be
new even in general. The main highlight is a construction
of high-rate codes with sublinear time decoding. The only
prior construction of such codes is due to Kopparty, Saraf
and Yekhanin [33]. All our codes are extremely simple, be-
ing just lifts of various parity check codes (codes with one
symbol of redundancy), and in the final case, the lift of a
Reed-Solomon code.

We also present a simple connection between certain lifted
codes and lower bounds on the size of“Nikodym sets”. Roughly,
a Nikodym set in Fmq is a set S with the property that every
point has a line passing through it which is almost entirely
contained in S. While previous lower bounds on Nikodym
sets were roughly growing as qm/2m, we use our lifted codes
to prove a lower bound of (1− o(1))qm for fields of constant
characteristic.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Error Control
Codes
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1. INTRODUCTION
In this work we explore the “locality properties” of some

highly symmetric codes constructed by“lifting”“affine-invariant”
codes. We describe these terms below.

1.1 Basic terminology and background
We start with some standard coding theory preliminaries.

Let Fq denote the finite field of cardinality q and for any
finite set D, let {D → Fq} denote the set of all functions
from D to Fq. In this work, a code on coordinate set D
is a set of functions F ⊆ {D → Fq}. A code F is said to
be linear if it forms a vector space over Fq, i.e., if for every
f, g ∈ F and α ∈ Fq the function αf + g ∈ F . We refer to
N = |D| as the length of the code. A second parameter of
interest is the dimension of the code which is the dimension
of F as a vector space. The dual of a code F , denoted F⊥,
is the set of functions {g : D → Fq|〈f, g〉 = 0 ∀f ∈ F},
where 〈f, g〉 =

∑
x∈D f(x)g(x) denotes the standard inner

product of vectors. Let wt(f) = |{x ∈ D|f(x) 6= 0}| denote
the weight of f . Let δ(f, g) = |{x ∈ D|f(x) 6= g(x)}|/|D|
denote the (normalized Hamming) distance between f and
g. (So δ(f, g) = wt(f − g)/|D|.) We say f is δ-close to g if
δ(f, g) ≤ δ and δ-far otherwise. We say f is δ-close to F if
there exists g ∈ F that is δ-close to f and δ-far otherwise.
We say F is a code of distance δ if every pair of distinct
codewords in F are δ-far from each other. We use δ(F) to
denote the maximum δ such that F is a code of distance δ.

In this work we explore some aspects of affine-invariant
codes. In such codes the domain D is a vector space Fmqn ,
i.e., an m-dimensional vector space over the n-dimensional
extension field of the range Fq. Let Q = qn and let FQ
denote the field of size Q. We say a function A : FmQ → FmQ
is an affine function if A(x) = M · x + b for some matrix
M ∈ Fm×mQ and vector b ∈ FmQ . We say A is an affine
permutation if M is invertible. A code F ⊆ {FmQ → Fq}
is said to be affine-invariant if for every affine permutation
function A : FmQ → FmQ and for every f ∈ F the function

f ◦A given by (f ◦A)(x) = f(A(x)) is also in F .1

1In some of the earlier works invariance is defined with re-
spect to all affine functions and not just permutations. In
the full version [23] we show that the two notions are equiv-
alent and so we use invariance with respect to permutations
in this paper.



Affine-invariant codes are of interest to us because they
exhibit, under natural and almost necessary conditions, very
good locality properties: they tend to be locally testable and
locally correctible. We introduce these notions below. We
say a code F is (k, δ)-locally correctible ((k, δ)-LCC) if there
exists a probabilistic algorithm Corr that, given x ∈ D and
oracle access to a function f : D → Fq which is δ-close to
some g ∈ F , makes at most k queries to f and outputs g(x)
with probability at least 2/3. We say that F is (k, ε, δ)-
locally testable ((k, ε, δ)-LTC) if F is a code of distance δ
and there exists a probabilistic algorithm Test that, given
oracle access to f : D → Fq, makes at most k queries to f
and accepts f ∈ F with probability one, while rejecting f
that is τ -far from F with probability at least ε · τ .

1.2 This work: Motivation and Results
As noted above affine-invariant lead naturally to locally

decodable codes and locally testable codes. In this work
we use a certain lifting operation to exhibit codes with very
good locality. We start by defining the lifting operation. For
a function f : FmQ → Fq and set S ⊆ FmQ let f |S denote the
restriction of f to the domain S.

Definition 1.1 (Lifting). For a code F ⊆ {FtQ →
Fq}, and integer m ≥ t, its m-dimensional lift Liftm(F) ⊆
{FmQ → Fq} is the code consisting of all f : FmQ → Fq such
that f |V ∈ F for every t-dimensional affine subspace V .

(Note that the definition above assumes some canonical
way to equate t-dimensional subspaces of FmQ with FtQ. But
for affine-invariant families F the exact correspondence does
not matter as long as the map is an isomorphism.)

The lift is a very natural operation on affine-invariant
codes, and builds long codes from shorter ones. Indeed,
lifts may be interpreted as the basic operation that leads
to the construction of “(Generalized) Reed-Muller” codes,
codes formed by m-variate polynomials over Fq of total de-
gree at most d: Such codes are the “lifts” of t-variate poly-
nomials of degree at most d, for t = d d+1

q−q/pe where p is the

characteristic of q. (This follows from the “characterization”
of polynomials as proven in [30].) While the locality prop-
erties (testability and correctability) of Reed-Muller codes
are well-studied [36, 3, 4, 35, 1, 30, 27, 10, 26], they are
essentially the only rich class of symmetric codes that are
well-studied. The only other basic class of symmetric codes
that are studied seem to be sparse ones, i.e., ones with few
codewords.

In this work we explore the lifting of codes as a means
to building rich new classes of dense symmetric codes. (In
Theorems 1.2 - 1.5 below we describe some of the codes
we obtain this way, and contrast them with known results.)
Along the way we also initiate a systematic study of lifts of
codes. Lifts of codes were introduced first in [7], who ex-
plored it to prove negative results — specifically, to build
“symmetric LDPC codes” that are not testable. (Their def-
inition was more restrictive than ours, and also somewhat
less clean.) Our work is the first to explore positive use of
lifts.

We remark that all codes constructed by lifting have rela-
tive distance of at least Q−t and are (Qt, Q−t/3)-LCC’s and
(Qt,Ω(Q−2t), Q−t)-LTC’s. The local correctability follows
directly from their definition, while the local testability is a
consequence of the main result of [31, Theorem 2.9]. (See
also Proposition 2.10.) This general feature suffices for three

of our code construction, while in the fourth case we have
to analyze the decodability a little more carefully.

An example.
Let q be a power of 2, let d = (1− δ)q and let us consider

the lift of the set of all univariate polynomials over Fq of
degree at most d to F2

q. Explicitly, we mean the code F con-
sisting of all functions f : F2

q → Fq such that the restriction
of f to any line of F2

q is a univariate polynomial of degree at
most d. F is an affine-invariant linear space.

By construction, it is clear that F has a lot of local struc-
ture; this leads to a simple local-correction algorithm for F
based on picking random lines and performing noisy univari-
ate polynomial interpolation (i.e., Reed-Solomon decoding).
We will show that in fact F also has large dimension (when δ
is small). This leads to a high-rate locally correctable code.

Which functions f : F2
q → Fq lie in F? We will give an an-

swer to this question later in the paper, in terms of the poly-
nomial representation f(X,Y ) =

∑
0≤i,j<q aijX

iY j . Here
since we are interested in showing that dimF is large, it
will suffice for us to show that there are many linearly in-
dependent elements in F . To do this, we will study when a
monomial g(X,Y ) = XiY j is in F . Note that if we restrict
g to a line `(T ) = (α1T +α0, β1T +β0), we get the function

g|`(T ) = (α1T + α0)i(β1T + β0)j

=
∑
r≤i

∑
s≤j

αr1α
i−r
0 βs1β

j−s
0

(
i

r

)(
j

s

)
T r+s.

This function will equal a univariate polynomial of degree at
most d at all points of Fq if, when we reduce it mod T q −T ,
we see no monomials of degree > d. Reducing the above
polynomial mod T q − T amounts to replacing T r+s in the
above expression with T r+s (mod∗ q) (where a (mod∗ q) = 0
if a = 0 and a (mod∗ q) = b ∈ {1, . . . , q − 1} if a 6= 0
and a = b (mod q − 1)). This will happen if i, j satisfy the
following criterion: for every r ≤ i, s ≤ j, if

(
i
r

)
6= 0 mod 2

and
(
j
s

)
6= 0 mod 2, then r + s (mod∗ q) ≤ d. Via Lucas’

theorem (which gives a characterization of when
(
a
b

)
= 0

mod 2, we deduce that the monomial XiY j is in F if (i, j)
lies in the set:

S = {(i, j) | ∀r ≤2 i, j ≤2 s, r + s (mod∗ q) ≤ d},

where a ≤2 b means that set of coordinates that equal 1
in the binary representation of a is a subset of the set of
coordinates that equal 1 in the binary representation of b.
Finally, an analysis of the set S shows that its size is ≥
(1− εδ) · q2, where εδ → 0 as δ → 0. Thus the dimension of
F is at least (1− εδ) · q2.

We will formally treat this example in greater generality
in a later section. Before that, we will build up the theory
of lifts of multivariate codes. In Proposition 2.2 we will see
that affine-invariant codes are completely characterized by
(and in fact spanned by) the monomials in the code; thus
the dimension of the code above exactly equals |S|.

The constructions.
For simplicity most codes are described for the case of

fields of characteristic two, while the construction does gen-
eralize to other fields. (The main exception is in Theorem 1.3
where the code is later applied in other cases, so we de-
scribe the more general result.) The codes in the first three



theorems below are obtained by the lifting of the parity-
check code. By making appropriate choices of Q and t we
get codes with different locality (and distance). The fourth
code works over large fields only and is obtained by lifting
the Reed-Solomon code.

Our first code has constant locality k, for k being a power
of 2. If the length of the code is N (in our setting N = Qm),
then the code has dimension Ωk((logN)k).

Theorem 1.2. For every positive integer t and k = 2t,
there exists a constant ck > 0 such that for every positive
integer m and N = 2m, there exists a binary code of length
N , dimension at least ck(logN)k−2 which is a (k−1, k−1/3)-
LCC, and a (k,Ω(k−2), k−1)-LTC.

To contrast this with other known codes, essentially the
only symmetric binary code known in this regime is the
Reed-Muller code, which has dimension Ω((logN)log k) for
locality k. Thus our code has significantly greater dimen-
sion in this regime. Our results are also asymptotically opti-
mal for affine-invariant codes, by a result of Ben-Sasson and
Sudan [9] which shows that any affine-invariant code with
such local correctability or testability must have dimension
(logN)k+O(1).

For local correctability, these codes asymptotically match
the performance of best-known codes, which would be ob-
tained by taking Generalized Reed-Muller codes over a field
of size roughly k and then composing it with some binary
code. Our codes are simpler to describe and the symmetry
comes without any loss of parameters. Furthermore, for re-
ally small constants, say k = 4 or k = 8, these codes seem to
be better than previously known locally correctible codes.

Our next two codes consider relatively large locality (grow-
ing with N). The advantage with these codes is that the
redundancy (the difference between the length and the di-
mension) grows exceedingly slowly. The first of these two
codes considers the setting where the locality is N ε for some
positive (but tiny) ε. In such cases, we get codes of dimen-

sion N − N1−ε′ where ε′ > 0 if ε > 0. Thus the dimension
is extremely close to the length.

Theorem 1.3. For every ε > 0 and prime p, there exists
ε′ > 0 such that for infinitely many N , there is a p-ary code

of length N , dimension N −N1−ε′ which is a (N ε, N−ε/3)-
LCC and a (N ε,Ω(N−2ε), N−ε)-LTC.

The codes from Theorem 1.3 are not new. These codes,
and in particular their exact dimension are well-known in
the literature in combinatorics [11, 38]. Their locality was
first noted by Yekhanin [39] who noticed in particular that
they are LCCs. Our main contribution is to note that these
are (naturally) obtained from lifts. In the process we get
that these are affine-invariant codes and so are also LTCs, a
fact that was not known before. Finally, our bounds while
cruder, give better asymptotic sense of the redundancy of
these codes (and in particular note that the redundancy is
sublinear in the code length).

We remark that these codes have very poor distance and
very poor error-correcting capability. However, in the con-
text of applications such as constructions of PCPs (proba-
bilistically checkable proofs, see e.g., [2]) one does not need
distance or error-correction capability per se. All one seems
to need is the local correction and decoding capability. So

the theorem above motivates the search for extremely effi-
cient PCPs, where the difference between the length of the
PCP and the length of the classical proof is sublinear, while
allowing for sublinear query complexity. Such a result, if
at all possible, would really be transformative in the use
of PCPs as a positive concept. We also note that these
codes play a useful role in giving lower bounds on the size
of Nikodym sets — we will elaborate on this shortly.

Next, we consider codes of locality Ω(N), so linear in the
length of the code. This range of parameters was motivated
by the recent result of Barak et al. [5] who used such codes
(with additional properties that we are not yet able to prove)
to build“small-set expanders”with many“large eigenvalues”.
We won’t describe the application here, but instead turn to
the parameters they sought. They wanted codes of length
N with locality εN and dimension N − poly(logN). The
codes they used were Reed-Muller codes. By exploring lifts
we are able to suggest some alternate codes. These codes
do have slightly better dimension, though unfortunately, the
improvement is not asymptotically significant (and certainly
not close to any known limits). Nevertheless we report the
codes below.

Theorem 1.4. For every ε > 0 and for infinitely many
N , there is a binary code of length N , dimension N−Oε((logN)log 1/ε),
which is a (εN, 1

3
(εN)−1)-LCC and a (εN,Ω((εN)−2), (εN)−1)-

LTC.

We note that Barak et al. also require the codes to be
“absolutely testable”, a strong notion of testability that we
do not achieve in this work. Indeed, it is unclear if the codes
as described above will turn out to be absolutely testable.
In followup work to ours, Haramaty et al. [25], do show that
some codes constructed by the above principle (but not all)
are absolutely testable. The dimensions of their codes are
somewhere between those of Barak et al. and those from the
above theorem (so are still of no asymptotic significance).

Finally, we describe the most interesting choice of param-
eters. Our final code has locality Nδ for arbitrarily small
δ > 0, while achieving dimension (1 − ε)N for arbitrarily
small ε > 0. While the dimension of this code is smaller
than that of the codes of Theorem 1.4, it corrects a constant
positive fraction of errors.

Theorem 1.5. For every ε, δ > 0 there exists τ > 0 such
that for infinitely many N , there is a q-code of length N
over FQ, for Q ≈ Nδ, of dimension (1 − ε)N which is a
(Nδ, τ)-LCC, for some q ≈ Nδ.

Till 2010, no codes achieving such a range of parameters
were known. In particular no code was known that achieved
dimension greater than N/2 while achieving o(N) locality
to correct constant fraction of errors. In 2010, Kopparty et
al. [33] introduced what they called the “multiplicity codes”
which manage to overcome the rate 1/2 barrier. Other than
their codes, no other constructions were known that achieved
the parameters of Theorem 1.5 and our construction pro-
vides the first alternate. We remark that while qualitatively
our theorem matches theirs, the behavior of τ as a function
of ε and δ is much worse in our construction. Nevertheless
for concrete values of N , ε and δ our construction actually
seems to perform quite well. Also, whereas in the basic
codes of [33] are over larger alphabets than N , our codes
are naturally over much smaller alphabets. (Of course, one



can always use concatenation to reduce alphabet sizes, but
such operations do result in a loss in concrete settings of
parameters.)

Theorems 1.2-1.5 are proved in Section 3. While each of
the codes above may be of interest on their own, the un-
derlying phenomenon, of constructing codes with interest-
ing parameters by lifting shorter codes is an important one.
Given our belief that lifting is an important operation that
deserves study, we also do some systematic analysis of lifts.
In particular in this work we show that lifting of a base code
essentially preserves distance. This preservation is not exact
and we give examples proving this fact.

Bounds on the size of Nikodym sets.
One of the applications of our results is to bounding, from

below, the size of “Nikodym sets” over finite fields (of small
characteristic). We define this concept before describing our
results.

A set N ⊆ Fmq is said to be a Nikodym set if every point
x has a line passing through it such that all points of the
line, except possibly the point x itself, are elements of N .
More precisely, N is a Nikodym set if for every x ∈ Fmq there
exists y ∈ Fmq \ {0} such that {x+ ty|t ∈ F∗q} ⊆ N .

Nikodym sets are closely related to “Kakeya sets” — the
latter contain a line in every direction, while the former con-
tain almost all of a line through every point. A lower bound
for Kakeya sets was proved by Dvir [12] using the polynomial
method and further improved by using“method of multiplic-
ities ” by Saraf and Sudan [37] and Dvir et al. [13]. Kakeya
sets have seen applications connecting its study to the study
of randomness extractors, esp. [14, 15]. Arguably Nikodym
sets are about as natural in this connection as Kakeya sets.

Previous lower bounds on Kakeya sets were typically also
applicable to Nikodym sets and led to bounds of the form
|N | ≥ (1− o(1))qm/2m where the o(1) term goes to zero as
q →∞2. In particular previous lower bounds failed to sepa-
rate the growth of Nikodym sets from those of Kakeya sets.
In this work we present a simple connection (see Propo-
sition 4.1) that shows that existence of (high-rate) affine-
invariant codes that are lifts of non-trivial univariate codes
yield (large) lower bounds on the size of Nikodym sets. Us-
ing this connection we significantly improve the known lower
bound on the size of Nikodym sets over fields of constant
characteristic.

Theorem 1.6. For every prime p, and every integer m,
there exists ε = ε(p,m) > 0 such that for every finite field
Fq of characteristic p, if N ⊆ Fmq is a Nikodym set, then

|N | ≥ qm − q(1−ε)m. In particular if q → ∞, then |N | ≥
(1− o(1)) · qm.

Thus whereas previous lower bounds on the size of Nikodym
sets allowed for the possibility that the density of the Nikodym
sets vanishes as m grows, ours show that Nikodym sets oc-
cupy almost all the space. One way to view our results is
that they abstract the polynomial method in a more general
way, and thus lead to stronger lower bounds (in some cases).

Previous work on affine-invariance.
The study of invariance, and in particular affine-invariance,

in property testing was initiated by Kaufman and Sudan [31]

2In the m = 2 case, better bounds are known for Nikodym
sets [16, 34].

and there have been many subsequent works [9, 21, 22, 20,
32, 29, 6, 7, 28, 8, 24]. Most of the works, with the excep-
tions of [32, 29], study the broad class with the aim of char-
acterizing all the testable properties. The exceptions, Kauf-
man and Wigderson [32] and Kaufman and Lubotzky [29],
are the few that attempt to find new codes using invariance.
While the performance of their codes is very good, unfortu-
nately they do not seem to lead to local testability and the
performance is too good to be locally decodable (or locally
correctible). Our work seems to be the first in this con-
text to explore new codes that do guarantee some locality
properties.

A second, more technical, point of departure is that our
work refocusses attention on invariance of“multivariate prop-
erties”. Since the work of [31] most subsequent works fo-
cussed on univariate properties. While this study seemed to
be without loss of generality, for the purpose of construc-
tions it seems necessary to go back to the multivariate set-
ting. One specific contribution in this direction is that we
show that invariance under general affine-transformations
and under affine-permutations lead to the same set of prop-
erties (see the full version [23]).

Organization.
In Section 2 we present some of the background material

on affine-invariant codes and present some extensions in the
multivariate setting. In Section 3 we describe our codes and
analyze them. In Section 4 we describe our application to
lower bounding Nikodym sets. In Section 5 we describe how
distance of lifted codes behave. Some of the technical proofs
are deferred to the appendix.

2. PRELIMINARIES
In this section we describe some basic aspects of affine-

invariant properties, specifically their degree sets. We men-
tion in particular the fact that the size of degree sets deter-
mines the dimension of a given affine-invariant code. Finally
we conclude by relating the degree set of a base code to the
degree set of a lifted code. In later sections we will use this
relationship to lower bound the size of the degree set of lifted
codes, and thus lower bound their dimension. We note that
the results of this section are described for general q (and
not for the special case of q = 2). Proofs are omitted but
can be found in the full version [23].

For a function f : FmQ → Fq, we associate with it the
unique polynomial in FQ[x1, . . . , xm] of degree at most Q−1
in each variable that evaluates to f . (We abuse notation
by using the same notation to refer to a function and the
associated polynomial.) For d = 〈d1, . . . , dm〉 and x =

〈x1, . . . , xm〉, let xd denote the monomial
∏m
i=1 x

di
i . For

a function f =
∑

d cdx
d, let its support, denoted supp(f),

be the set of degrees with non-zero coefficients in f , i.e.,
supp(f) = {d | cd 6= 0}.

Definition 2.1 (Degree set). For a code F ⊆ {FmQ →
Fq}, its degree set, denoted Deg(F), is the set Deg(F) =
∪f∈F supp(f). For a set D ⊆ {0, . . . , Q− 1}m, let its code,
denoted Fam(F) be the set Fam(F) = {f : FmQ → Fq |
supp(f) ⊆ D}.

For an affine-invariant code, its degree set uniquely deter-
mines the code and in particular the following proposition
holds.



Proposition 2.2. For linear affine-invariant codes F ⊆
{FmQ → Fq}, we have Fam(Deg(F)) = F .

Our reason to study the degree sets is that the size of the
degree set gives the dimension of a code exactly.

Proposition 2.3. For a linear affine-invariant code F ⊆
{FmQ → Fq}, we have the dimension of F equals |Deg(F)|.

Next we attempt to describe how the degree set of a lifted
code can be determined from the degree set of a base code.
We start by mentioning a simple property of degree sets that
will be quite useful in our analysis.

Let (mod∗Q) denote the operation that maps non-negative
integers to the set {0, . . . , Q−1} as given by a (mod∗Q) = 0
if a = 0 and a (mod∗Q) = b ∈ {1, . . . , Q − 1} if a 6= 0 and
a = b (mod Q − 1). (Note that if a (mod∗Q) = b, then
xa = xb (mod xQ − x).)

For Q = qn and e,d ∈ {0, . . . , Q − 1}n, we say that e is
a q-shift of d if there exists j such that for every i, we have
ei = qj · di (mod∗Q). Note that e is a q-shift of d if and
only if d is a q-shift of e.

Proposition 2.4. Let F ⊆ {FmQ → Fq} be a linear affine-
invariant code and let D = Deg(F) be its degree set. Then
D is q-shift closed, i.e., if d ∈ D and e is a q-shift of d then
e ∈ D.

We now turn to identifying the degree sets of lifted codes.
We start with the case of lifts of univariate codes, which
are somewhat simpler to describe. The lifts of multivariate
codes come from the same principles, but are messier to
describe.

It turns out that the structure of the degree set (not ev-
ery set D is the degree set of an affine-invariant code) is
strongly influenced by the base p representation of its mem-
bers, where p is the characteristic of q, the alphabet of our
codes. We start with some notions related to such represen-
tations. For non-negative integers a and b, let a(0), a(1), . . . ,
and b(0), b(1), . . . , be their base p expansion, i.e., 0 ≤ a(i), b(i) <
p, a =

∑
i a

(i)pi and b =
∑
i b

(i)pi. We say a is in the

p-shadow of b, denoted a ≤p b, if a(i) ≤ b(i) for every i.
We extend the notion to vectors coordinate-wise. So for,
e,d ∈ Zn, we say e ≤p d if ei ≤p di for all i ∈ [n].

Definition 2.5. For a set D ⊆ {0, . . . , Q − 1}, its mth
lift, denoted Liftm(D) is the set of d ∈ {0, . . . , Q−1}m such
that for all, for all e ≤p d, we have

∑m
i=1 ei (mod∗Q) ∈ D.

The following proposition makes the implied connection
between lifts of codes and their degree sets explicit. We
note that this proposition is implicit in [7].

Proposition 2.6. For every linear affine-invariant code
F ⊆ {FQ → Fq}, and for every m ≥ 1, we have

Lift
m

(Deg(F)) = Deg(Lift
m

(F)).

We now extend the above definition and proposition to
the case where the code being lifted is itself a multivariate
one.

To this end we extend some of the notations from the
previous parts to matrices. For matrices A,B ∈ Zn×` we
say A ≤p B if (A)ij ≤p (B)ij for every pair (i, j) ∈ [n]× [`].

Next, we extend the notion to compare vectors to elements
and matrices to vectors. For e ∈ Z` and d ∈ Z we say e ≤p d
if for every f ≤p e we have

∑
i∈[`] fi ≤p d. (This notion

corresponds to the support of (1 +
∑`
i=1 xi)

d: xe appears
with a non-zero coefficient only if e ≤p d.) Extending to
matrices and vectors, A ∈ Zn×` with rows (A)j ∈ Z` and
d = 〈d1, . . . , dn〉 ∈ Zn we say A ≤p d if (A)j ≤p dj for
every j ∈ [n].

Finally, we need one more piece of notation before defin-
ing the degree sets of multivariate lifts. For matrix A ∈
Zn×`, let Σ(A) ∈ Z` denote its row sum given by Σ(A)j =∑n
i=1(A)ij .
We are now ready to define the lifts of multivariate degree

sets.

Definition 2.7 (Degree sets of lifts). For a set D ⊆
{0, . . . , Q− 1}t, its mth lift, denoted Liftm(D), is the set of
d ∈ {0, . . . , Q − 1}m such that, for all E ∈ Zm×t ≤p d, we
have Σ(E) (mod∗Q) ∈ D.

The following proposition is the multivariate analog of
Proposition 2.6.

Proposition 2.8. For every linear affine-invariant code
F ⊆ {FtQ → Fq}, and for every m ≥ t, we have

Lift
m

(Deg(F)) = Deg(Lift
m

(F)).

The definition of Liftm(D) is somewhat cumbersome and
not easy to work with. However in the upcoming sections
we will try to gain some combinatorial insights about it to
derive bounds on the dimension of the codes of interest.

Finally, before concluding we mention explicitly the lo-
cality properties of lifted codes. We start with a simple
observation.

Proposition 2.9. Let F ( {FmQ → Fq} be a linear affine-

invariant code. The δ(F) ≥ 2 ·Q−m.

Proposition 2.10. Let F ( {FtQ → Fq} be a linear affine-
invariant code. Let L = Liftm(F) be its m-ary lift. Then L
is a (Qt − 1, 1

3
Q−t)-LCC and a (Qt,Ω(Q−2t), Q−t)-LTC.

3. CONSTRUCTIONS

3.1 Codes of constant locality
In this section we prove Theorem 1.2 which promised

binary codes of locality k and length N with dimension
Ωk(logN)k−2.

The Code.
Fix k = Q = 2` and N = 2m`. Let F1 ⊆ {FQ → F2} be

the code given by {f : FQ → F2 |
∑
α∈FQ f(α) = 0}. Let

L1 = Liftm(F1). In what follows we verify that L1 has the
properties claimed in Theorem 1.2.

We start with some obvious aspects.

Proposition 3.1. L1 is a binary code of length N and a
(k − 1, k−1/3)-LCC and a (k,Ω(k−2), k−1)-LTC.

Proof. The length is immediate from the construction.
The local correctability and testability follow from Proposi-
tion 2.10.



The main aspect to be verified is the dimension of L1. We
first describe the degree set of F1.

Claim 3.2. Deg(F1) = {0, . . . , Q− 2}.

Proof. Write f : FQ → F2 as f(x) =
∑Q−1
d=0 fdx

d. Then∑
α∈FQ f(α) =

∑
α∈FQ

∑Q−1
d=0 fdα

d =
∑Q−1
d=0 fd

(∑
α∈FQ α

d
)

=

−fQ−1 where we have used the fact that
∑
α∈FQ α

d = −1 if

d = Q − 1 and is equal to 1 otherwise. Therefore f ∈ F1 if
and only if deg(f) < Q− 1.

Remark: Note that the proof above applies without change
to the case of the range being Fq, for any q, provided FQ ex-
tends Fq.

The next claim interprets the definition of Liftm(D) in our
setting.

Claim 3.3. d ∈ {0, . . . , Q− 1}m is contained in Deg(L1)
if and only if for every e ≤2 d we have

∑m
i=1 ei (mod∗Q) 6=

Q− 1.

Proof. Follows immediately by applying Proposition 2.6
to Claim 3.2.

Given the claim, it is simple to get a lower bound on the
dimension of our code.

Lemma 3.4. The dimension of L1 is at least
(
m
Q−2

)
.

Proof. For S ⊆ [m] let dS denote the vector that is one
on coordinates from S and zero outside. It is clear that for
|S| ≤ Q − 2, dS ∈ Liftm(Deg(F1)) and there are at least(
m
Q−2

)
such sets.

Proof of Theorem 1.2. Theorem 1.2 follows Proposi-
tion 3.1 and Lemma 3.4 and plugging the values of m and
Q from the construction. Specificalle we have that the di-
mension of the code is at least

(
m
Q−2

)
≥ 1

kk−2k!
(logN)k−2.

So the theorem follows for ck = 1
kk−2k!

.

3.2 Codes of sublinear locality
Next we turn to Theorem 1.3, which asserts the existence

of codes of locality N ε with dimension N −N1−ε′ .

The Code.
Given ε > 0 and prime p, let m = d1/εe. Let ` be an

integer such that pm` ≥ N . Let Q = p`. Let F2 ⊆ {FQ →
Fp} be the code {f : FQ → Fp |

∑
α∈FQ f(α) = 0}. Let

L2 = Liftm(F2).
As usual we get the following proposition.

Proposition 3.5. F2 is a p-ary code of length at least N
and locality at most N ε. Specifically it is a (N ε,Ω(N−ε))-
LCC and a (N ε,Ω(N−2ε), N−ε)-LTC.

We now turn to the task of analyzing the dimension of
this code. We first describe the degree sets of F2 and L2.

Claim 3.6. Deg(F2) = {0, . . . , Q − 2}. Moreover, d ∈
{0, . . . , Q− 1}m is in Deg(L2) if and only if,] for all e ≤p d
we have

∑
i ei (mod∗Q) 6= Q− 1.

Proof. The first part follows from the proof of Claim 3.2
(see the remark following the proof). The second part fol-
lows immediately from Proposition 2.8.

Lemma 3.7. The dimension of L2 is at least N − N1−ε′

for some ε′ = Ω(2−2/ε).

Proof. Let D = Deg(F2). Let e = 〈e1, . . . , em〉 and

e
(0)
i , e

(1)
i , . . . , e

(`−1)
i denote the p-ary expansion of ei.

Claim 3.8. If there exists integer s ∈ {0, . . . , `− 1} such
that for every i ∈ [m] and every j ∈ [1 + dlogme] we have

e
(s+j (mod `))
i = 0, then e ∈ Liftm(D).

Proof. Recall, by Proposition 2.4 that e ∈ Liftm(D) if
and only if e′ ∈ D for every e′ that is a p-shift of e. Thus
without loss of generality we can assume (by shifting e ap-
propriately), that the block of zeroes are the most significant
digits in the ei’s. (i.e., s = `− dlogme − 2.)

With this assumption, we now have ei < p`−logm−1 <
Q/(pm) < (Q − 1)/m. We thus conclude that for every
f ≤2 e,

∑m
i=1 fi ≤

∑m
i=1 ei < Q − 1 and so (by Claim 3.6)

e ∈ Liftm(D).

The lemma follows by an easy counting argument. Let
t = 1 + dlogme. We partition the set [`] into `/t blocks of t
successive integers each. For each such block the number of
possible assignments of digits that do not make the entire
block zero in each ei is pmt − 1. Thus the total number
of vectors e that do not have any of these blocks set to

zero is (pmt − 1)`/t = pm`(1 − p−mt)`/t ≈ pm`e`/(tp
mt) =

pm`(1−Ω(1/mtpmt)) = N1−ε′ for ε′ = 1/(mtpmt). Recalling

that ε = 1/m, we have ε′ = Ω(p−2/ε). The lemma follows
by noting that if e 6∈ Liftm(D) then in each of these blocks
it must be non-zero somewhere (by Claim 3.8 above).

Proof of Theorem 1.3. Theorem 1.3 follows immedi-
ately from Proposition 3.5 and Lemma 3.7.

3.3 Codes of linear locality
Finally, we prove Theorem 1.4, which claims codes of lo-

cality εN with dimension N −poly logN . This construction
is different from the previous two in that here we lift a mul-
tivariate code, whereas in both previous constructions we
lifted univariate codes.

The Code.
Let ` = dlog 1/εe (so that 2−` ≤ ε). Let Q = 2`. For

integer m let N = 2m` and let t = m− 1. Let F3 ⊆ {FtQ →
F2} be given by F3 = {f : FtQ → F2 |

∑
α∈Ft

Q
f(α) = 0}.

Let L3 = Liftm(F3).

Proposition 3.9. L3 is a code of block length N with
locality εN . Specifically, it is a (εN, 1

3
(εN)−1)-LCC and a

(εN, (εN)−2, (εN)−1)-LTC.

The proposition below asserts that every degree except
the vector that is Q− 1 in every coordinate is in the degree
set of F3. (Here (Q − 1)t denotes the t-tuple all of whose
entries is Q − 1, rather than (Q − 1) exponentiated to the
t-th power).

Proposition 3.10. Deg(F3) = {0, . . . , Q − 1}t − {(Q −
1)t}.

Proof. Write f : FtQ → F2 as f(x) =
∑

d∈{0,...,Q−1}t fdx
d.

Then
∑
α∈Ft

Q
f(α) =

∑
α∈Ft

Q

∑
d fdx

d =
∑

d fd
(∑

α∈Ft
Q
αd
)

=



∑
d fd

∏t
i=1

(∑
α∈FQ α

di
)

= (−1)tf(Q−1)t where we have

used the fact that
∑
α∈FQ α

d = −1 if d = Q − 1 and is

equal to 0 otherwise. Therefore f ∈ F3 if and only if
f(Q−1)t = 0.

While in general degree sets of lifts of multivariate families
are not easy to characterize, in this particular case we have
a clean characterization of the degree set.

Given e = 〈e1, . . . , em〉 let e
(j)
i denote the jth bit in the

binary expansion of ei. Let M(e) denote the m × ` matrix

with entries M(e)i,j = e
(j)
i .

Lemma 3.11. e ∈ Liftm(Deg(F3)) if and only if there ex-
ists a column in M(e) with at least two zeroes.

Proof. As in the proof of Lemma 3.7 we have that e ∈
Liftm(Deg(F3)) if and only if 2e (mod∗Q) ∈ Liftm(Deg(F3)).
So without loss of generality we can assume that e is shifted
so that the two zeroes are in the most significant bits. Thus
we have that m−2 of the ei’s, say e1, . . . , em−2, are at most
Q − 1 and the remaining two are at most Q/2 − 1. We
thus have that

∑m
i=1 ei < (m − 1)Q − 1. Using this and

applying Proposition 2.8 it is easy to verify that e is not in
Liftm(Deg(F3)).

The following lemma now follows by simple counting.

Lemma 3.12. The dimension of L3 is 2m` − (m+ 1)`.

Proof of Theorem 1.4. Follows by plugging in the val-
ues for the parameters, specifically by setting ` = log 1/ε
and m = (logN/ log 1/ε). We get that the dimension of L3

is N − (1 + logN/ log 1/ε)log 1/ε.

We remark that the construction in [5] is very close in pa-
rameters. In their construction (i.e., the Reed-Muller codes)
the matrix M(e) must have at least ` + 1 zeroes. Since
any such matrix must have two zeroes in a single column it
follows that every matrix their construction admits is also
admissible in ours, while our allow for other matrices also.
However the difference between the length and dimension
is at most a constant factor (depending on `). (More pre-

cisely, the dimension of their code is 2m` −
∑`
i=0

(
m`
i

)
≈

2m`−(em)`.) Of course, for their application the code needs
to have much better local testability than given here. But
the local testability given here is just what follows immedi-
ately from the definition and previous works, and it is quite
possible that better bounds can be achieved by more careful
examination of this code.

3.4 High-rate high-error LCCs
Finally, we prove Theorem 1.5. This construction is a

departure from the others in that the code is not binary, and
the code being lifted is not the parity check code. Finally
the decoding algorithm is a bit more complex to explain,
though even this algorithm is by now folklore.

The code itself is a generalization of the classical multi-
variate polynomial code. Here we consider the set of all
functions f : Fmq → Fq such that the restriction of f to
any line has degree d. As is well known, every multivariate
polynomial of degree at most d is such a function. The re-
markable fact is that if q has small characteristic, then there
are many more such functions.

The Code.
Recall that we are given δ, ε and some N0 and we wish a

code of length N ≥ N0 of dimension (1 − ε)N and locality
Nδ. Let m = d1/δe and s be such that Q = 2s ≥ Nδ

0 . Let
b = 1 + dlogme and c = db2bm log 1/εe. Let γ = 2−c and

τ = γ/6 (so that 6τ ≤ γ ≤ ε−(1+dlogme)2m(1+dlog me)
and let

d = (1 − 2−c)Q. Let F4 = {f : FQ → FQ | deg(f) ≤ d}.
Let L4 = Liftm(F4). In words, it is the set of all degree m-
variate functions that have degree at most d when restricted
to a line.

Decoding.
The general idea for decoding L4 is the same as that for

multivariate polynomials, and in particular the algorithm
from Gemmell et al. [18].

Given f : FmQ → FQ that is τ -close to p ∈ L4 and a ∈ FmQ ,
the decoding algorithm works as follows: Pick a random b ∈
FmQ and let h : FQ → FQ be given by h(t) = f(a+ tb). Com-
pute, using a Reed-Solomon decoder (see, for instance, [19,
Appendix]), a polynomial g ∈ FQ[t] of degree at most d such
that δ(h, g) < γ/2. Output g(0).

Lemma 3.13. L4 is a code of block length N with locality
Nδ. Specifically, it is a (Nδ, γ/6)-LCC.

Proof. Let L = {a + tb | t ∈ FQ − {0}} be the line
through a with slope b. We first claim that with probability
at least 2/3, the line L contains fewer that γ/2 fraction errors
(i.e., points t 6= 0 such h(t) 6= p|L(t)).

Claim 3.14. For every a, Prb[δ(h, p|L) ≥ γ/2] < 2τ/γ.

The above claim follows easily from an application of Markov’s
inequality. Next we note that if the fraction of errors on L
is less than γ/2 then the decoder satisfies g = p|L and so
outputs g(0) = p|L(0) = p(a) as desired.

Next we turn to the analysis of the dimension of L4 which
is similar to the analysis of L2. First we note the obvious
fact.

Proposition 3.15. Deg(F4) = {0, . . . , d}. Moreover, d ∈
{0, . . . , Q − 1}m is in Deg(L4) if and only if for all e ≤2 d
we have

∑m
i=1 ei (mod∗Q) ∈ {0, . . . , d}.

Lemma 3.16. The dimension of L4 is at least (1− ε)N .

Proof. For non-negative integer b, let b(j) denote its bi-
nary expansion so that b =

∑
j b

(j)2j . Recall d = (1−2−c)Q.

Letting d(j) denoting its binary expansion, we note an inte-
ger e ∈ {0, . . . , Q−1} is at most d if (and only if) one of the

bits e(s−c), . . . , e(s−1) is zero. We use this to reason about
Deg(L4).

Let d = 〈d1, . . . , dm〉 and let d
(j)
i denote the jth bit in the

binary expansion of di.

Claim 3.17. Let b = 1 + dlogme. If there exists j ∈
{s − c, . . . , s − b} such that for every i ∈ [m] and every

` ∈ {0, . . . , b− 1} we have d
(j+`)
i = 0, then d ∈ Deg(L4).

Proof. Let e = 〈e1, . . . , em〉 ≤2 d and let e =
∑m
i=1 ei (mod∗Q).

We claim that e(j+b−1) = 0, which suffices to show that
e ≤ d. Let ei = 2s−(j+b)ei (mod∗Q) for all i ∈ [m], and
let e =

∑m
i=1 ei (mod∗Q). For every i ∈ [m] and every



k ∈ [s], e
(k)
i = e

(k+s−(j+b) (mod s))
i and similarly e(k) =

e(k+s−(j+b) (mod s)). Therefore it suffices to show that e(s−1) =
0 or equivalently e < 2s−1. By our assumption on d, e

(j+`)
i =

0 for all ` ∈ {0, . . . , b−1}, so e
(k)
i = 0 for all k ∈ {s−b, . . . , s−

1} and thus ei < 2s−b for all i ∈ [m]. By our choice of b,
m ≤ 2b−1, and thus

∑m
i=1 ei < m2s−b ≤ 2s−1.

We now consider picking d at random. By partitioning the
c most significant bits into disjoint blocks of b bits each, we
get that any such block is all zero with probability at least
2−mb. Thus the probability there exists a block which is all

zero is at least 1− (1−2−mb)c/b ≥ 1− e−c/(b2
mb). By choice

of c we have that c/(b2mb) ≥ ln(1/ε) and so e−c/(b2
mb) ≤ ε

and thus the dimension is lower bounded by (1− ε)N .

Proof of Theorem 1.5. Follows immediately from Lem-
mas 3.13 and 3.16.

We remark that the construction of this section is some-
what contrary to folk belief, which tends to suggest that gen-
eralized Reed-Muller codes (evaluations of m-variate poly-
nomials of degree at most d) are equivalently defined by
requiring that their restriction to lines are Reed-Solomon
codewords (evaluations of univariate degree d polynomials).
As pointed out earlier this folk statement is true only with
some restrictions on d and Q, and our construction benefits
by violating the restrictions. While the fact that there exist
functions that are not degree d polynomials, for d ≥ Q−Q/p,
which are degree d polynomials on every line has been known
for a while [17], presumably it was suspected that the effect
on the dimension of the lifted family was negligible. For-
tunately for this work, this presumption turned out to be
false.

We also give below an example of some concrete setting
of parameters for which this construction works.

Example 3.18. For every N = 22n, for n ≥ 7, there
exists a code of length N over the alphabet F2n of dimension
.77N that is decodable from 0.26% fraction errors with

√
N

queries

The example is obtained by setting c = 6, m = 2 and
Q = 2n in the construction. The fraction of errors is 2−6/6 ≈
0.26%. The rate follows from the following claim.

Claim 3.19. The dimension of the code is at least ((4c −
(5/4)3c + 1/4)/4c)N .

While the error-correction rate of the code is smaller than
that in [33], it does seem to start working at much smaller
lengths and with much smaller alphabet sizes.

4. NIKDOYM SETS
A Nikodym set N ⊆ Fmq is a set such that for all x ∈ Fmq ,

there exists y ∈ Fmq such that the punctured line {x + ty |
t ∈ Fq \ {0}} ⊆ N .

The following proposition strengthens and generalizes the
result usually obtained via the polynomial method [12].

Proposition 4.1. If L ⊂ {Fmq → Fq} is the lift of some
univariate linear affine-invariant family F ( {Fq → Fq},
and N ⊆ Fmq is a Nikodym set, then |N | ≥ dimL.

Proof. Suppose for sake of contradiction that |N | <
dimL. Then there exists nonzero f ∈ L such that f |N ≡ 0.
Let x ∈ Fmq . Then there is y ∈ Fmq such that x+ ty ∈ N for
every t ∈ Fq \ {0}. Define g(t) = f(x + ty). By definition
of L, we have g ∈ F , and moreover F is a nontrivial, so by
Proposition 2.9, either g = 0 or wt(g) ≥ 2. But g(t) = 0 for
every t 6= 0, hence g = 0, and in particular f(x) = g(0) = 0.
Since x was arbitrary, this shows that f is identically zero,
a contradiction.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Follows immediately by apply-
ing Proposition 4.1 to the code L obtained from Theorem 1.3,
i.e. the family of f taking values in Fp whose restrictions to
lines are polynomials of degree at most q − 2.

For comparison, the bound obtained by the polynomial
method is

(
m+q−2
m

)
≈ qm/m!, which can be improved to

qm/2m using the method of multiplicities. Other work on
finite field Nikodym sets by Li [34] as well as Feng, Li, and
Shen [16] obtain lower bounds that beat the standard poly-
nomial method bound for m = 2. In particular, [16] ob-

tains a bound of q2− q3/2− q, which is actually better than
our bound for two dimensions, which is q2 −O(qlog2 3/4) for
characteristic two. Moreover, their bound applies to q of
any characteristic. However, our bounds are the best known
and the only ones achieving qm(1− o(1)) for m ≥ 3.

5. GENERAL INVESTIGATION OF LIFT-
ING

The codes of the previous section simply picked some basic
codes and lifted them to derive long codes of reasonable dis-
tance and interesting local testability and decodability. To
go beyond this setting, we feel it is important to pick basic
codes of possibly high distance and then lift them, and this
could improve the performance of such codes. As may be ob-
served from the previous section most of the work needed to
analyze lifted codes is devoted to determining their dimen-
sion, and this can be a function of the exact code chosen.
Features such as distance, decodability, and testability seem
to follow more generically. In this section, we examine the
simplest of these properties, namely the distance of the lifted
code and prove some basic facts.

Theorem 5.1. Let F ⊆ {FtQ → Fq} and L = Liftm(F)
for some m ≥ t. We have the following:

1. δ(L) ≤ δ(F).

2. δ(L) ≥ δ(F)−Q−t.

3. If Q ∈ {2, 3} and δ(F) > Q−t then δ(L) ≥ δ(F).

5.1 Proof of Theorem 5.1
We divide the proof of Theorem 5.1 into several parts. We

start by proving that distance does not increase under lifting
(Theorem 5.1, Part 1).

Lemma 5.2. Let F ⊆ {FtQ → Fq} be a linear affine-
invariant code with lift L = Liftm(F). Then δ(L) ≤ δ(F).

Proof. By induction, it suffices to show the assertion
for the case m = t + 1. Let f ∈ F and let δ = δ(f, 0). Let
x = 〈x1, . . . , xt〉. Now consider the function g(x, y) = f(x).



Clearly we have δ(g, 0) = δ. We claim that g ∈ L, which
completes the proof. To do so we will show that g|H ∈ F
for every t-dimensional affine subspace H ⊆ FmQ . Fix such a
subspace H and let A : FtQ → FmQ be an affine map whose
image is H (such a map does exist). Note that g|H(z) =
f(A(z)1, . . . , A(z)t). Thus if we let A′ : FtQ → FtQ be the
affine map given by the projection of A to its first t coor-
dinates, we have that g|H = f ◦ A′. By [23, Theorem A.1],
f ◦ A′ ∈ F and so we have g ∈ F as claimed. (Note that
we need to use [23, Theorem A.1] since A′ need not be an
affine permutation but it is an affine transformation.)

Next we prove Part 3 of Theorem 5.1 which asserts that
the distance of non-trivial binary codes does not decrease
with lifting.

Lemma 5.3. If F ⊆ {Ft2 → F2} has distance δ(F) > 1
2t ,

then δ(Liftm(F)) ≥ δ(F) for all m ≥ t.

We prove the above lemma by stating and proving the
following stronger lemma first.

Lemma 5.4. For all m ≥ 2, if δ > 1
2m−1 and f : Fm2 →

F2 such that 0 < Prx∈Fm2 [f(x) 6= 0] < δ, then there exists
an (m − 1)-dimensional affine subspace H ( Fm2 such that
0 < Prx∈H [f(x) 6= 0] < δ.

Proof. We proceed by induction on m. The base case
m = 2 is straightforward to verify.

Now suppose m > 2 and our assertion holds for m − 1.
Let H0, H1 be the affine subspaces given by xm = 0 and
xm = 1 respectively. Let δ0, δ1 denote δ(f |H0 , 0), δ(f |H1 , 0)
respectively. Note that δ > δ(f, 0) = (δ0 + δ1)/2. If both
δ0, δ1 > 0, then by averaging we have 0 < δi < δ and so
H = Hi does the job. Otherwise, suppose w.l.o.g. that
δ1 = 0. Note that 0 < δ0 < 2δ and 2δ > 1

2m−2 . Thus, by the
induction hypothesis, there exists an (m − 2)-dimensional
affine subspace H ′0 ⊂ H0 such that 0 < δ(f |H′ , 0) < 2δ. Let
H ′1 = {(a1, . . . , am−1, 1) ∈ Fm2 | (a1, . . . , am−1, 0) ∈ H ′0} be
the translate of H ′0 in H1, and note that δ(f |H′1 , 0) = 0. Let

H = H ′0∪H ′1. Then H is an (m−1)-dimensional subspace of
Fm2 such that 0 < δ(f |H , 0) = (δ(f |H′0 , 0) + δ(f |H′1 , 0))/2 <
δ.

Proof of Lemma 5.3. We prove the lemma by induc-
tion on m − t. Indeed the inductive step is straightforward
since Liftm(F) = Liftm(Liftm−1(F)) and by induction both
lifts on the RHS have smaller value of m− t and so the dis-
tance does not reduce in either step. The main case is thus
the base case with m = t+ 1.

Suppose f ∈ Liftm(F) ( {Fm2 → F2} such that 0 <
δ(f, 0) < δ(F). By Lemma 5.4, there exists an (m − 1)-
dimensional affine subspaceH ⊂ Fm2 such that 0 < δ(f |H , 0) ≤
δ(f, 0) < δ, contradicting the fact that f |H ∈ F .

A similar approach works for q = 3, thus we have the
following.

Lemma 5.5. If F ⊆ {Ft3 → F3} has distance δ(F) > 1
3t ,

then δ(Liftm(F)) ≥ δ(F) for all m ≥ t.

Again, we prove this by stating and proving the following
analogue of Lemma 5.4.

Lemma 5.6. For all m ≥ 2, if f : Fm3 → F3 such that
δ(f, 0) ≥ 1

3m−1 , then there exists an (m − 1)-dimensional
affine subspace H ⊂ Fm3 such that 0 < δ(f |H , 0) ≤ δ(f, 0).

Proof. Let δ = δ(f, 0). We proceed by induction on m.
For the base case m = 2, δ ≥ 1

3
. Suppose f = f(x, y)

and consider f |y=i for i ∈ F3. If f |y=i is not identically
zero for all i ∈ F3, then by averaging there is some i ∈ F3

for which 0 < Prx∈F3 [f(x, i) 6= 0] ≤ δ. Otherwise, w.l.o.g.
suppose f |y=2 ≡ 0. Further, w.l.o.g. suppose f |y=0 6≡ 0 and
f(0, 0) 6= 0. Now, if δ ≥ 2

3
, then the line H = {(x, y) ∈

F2
3 | x = 0} does the job, since 0 < Pry∈F3 [f(0, y) 6= 0] ≤

2
3
≤ δ. If δ < 2

3
, then there must exist some a, b ∈ F3 and

c ∈ {0, 1} such that f(a, c) 6= 0 and f(b, 1 − c) = 0. Then
the line H = {(a, c), (b, 1− c), (2b−a, 2)} does the job, since
0 < Pr(x,y)∈H [f(x, y) 6= 0] = 1

3
≤ δ.

Now suppose m > 2 and the assertion holds for m − 1.
For i ∈ F3, let Hi be the hyperplane cut out by xm = i and
let δi = δ(f |Hi , 0). Then δ1 + δ2 + δ3 = 3δ. If δi > 0 for all
i ∈ F3, then by simple averaging for some i ∈ F3 we have
0 < δi ≤ δ, so assume w.l.o.g. δ2 = 0 and δ0 ≥ δ1. First
suppose δ0 ≥ 1

3m−2 . Then, by the inductive hypothesis,
there exists an (m− 2)-dimensional affine subspace H ⊂ H0

such that 0 < δ(f |H , 0) ≤ δ1. Let H(0) be defined by the
linear equations

∑m
i=1 aixi − a0 = 0 and xm = 0 for some

〈a0, . . . , am〉 ∈ Fm+1
3 . For each i, j ∈ F3, let H(i) + j ⊂ H1

denote the affine subspace defined by
∑m
i=1 aixi − a0 = j

and xm = i. By averaging, for some i ∈ F3, δ(f |H(1)+i, 0) ≤
δ2. Take H = H(0) ∪ (H(1) + i) ∪ (H(2) + 2i). Then 0 <
δ(f |H , 0) ≤ δ. Otherwise, suppose 1

3m−2 > δ0, so δ0, δ1 ≤
2

3m−1 . There exists H(0) ⊂ H0 be an (m − 2)-dimensional

affine subspace such that δ(f |H(0) , 0) = 1
3m−1 . To see this,

let a, b ∈ H0 such that f(a), f(b) are nonzero, and suppose a

and b differ in the k-th coordinate. Then take H(0) defined
by xk = ak and xm = 0. Again, for i, j ∈ F3 let H(j) + i
be the (m− 2)-dimensional affine subspace defined by xk =
ak+i and xm = j. Since δ2 ≤ 2

3m−2 , there is i ∈ F3 such that

f |H(1)+i ≡ 0. Then, takingH = H(0)∪(H(1)+i)∪(H(2)+2i),

we have 0 < δ(f |H , 0) = 1
3m−1 ≤ δ.

Proof of Lemma 5.5. We prove the lemma by induc-
tion on m − t. The inductive step is straightforward since
Liftm(F) = Liftm(Liftm−1(F)) and by induction both lifts
on the RHS have smaller value of m− t and so the distance
does not reduce in either step. The main case is thus the
base case with m = t+ 1.

Suppose f ∈ Liftm(F) ( {Fm3 → F3} such that 0 <
δ(f, 0) < δ(F). If δ(f, 0) ≥ 1

3m−1 , then, by Lemma 5.6,
there exists an (m−1)-dimensional affine subspace H ⊂ Fm3
such that 0 < δ(f |H , 0) ≤ δ(f, 0) < δ(F), contradicting the
fact that f |H ∈ F . If δ(f, 0) < 1

3m−1 , then there are at
most two points a, b ∈ Fm3 such that f(a), f(b) are nonzero.
Let i ∈ [m] such that ai 6= bi and let H be the hyperplane
defined by xi = ai. Then f |H is nonzero only on a, so
0 < δ(f |H) = 1

3m−1 < δ(F), again contradicting the fact
that f |H ∈ F .

For general q > 3, we have the following.

Lemma 5.7. If F ⊆ {FtQ → Fq} has distance δ(F) = δ,

then δ(Liftm(F)) > δ − 1−δ
Qt−1

.

Proof. Fix a non-zero f ∈ Liftm(F) and let τ = δ(f, 0).
Fix a ∈ FmQ such that f(a) 6= 0. Now letA be a t-dimensional
affine subspace containing a chosen uniformly at random
from all such subspaces. Let X(A) = |{x ∈ A | f(x) 6= 0}|
be the random variable denoting the number of non-zero



points of f on A. Since A samples every point of FnQ − {a}
uniformly, we have

EA[X(A)] = 1 +
τQm − 1

Qm − 1
(Qt − 1) < 1 + τ(Qt − 1).

Therefore there must exist a t-dimensional subspace A con-
taining a with X(A) < τ(Qt−1)+1. Since f |A is a non-zero
function in F , we have τ(Qt − 1) + 1 ≥ δQt and thus we
conclude that τ ≥ δ − 1−δ

Qt−1
. In other words every non-zero

function in F is non-zero on δ− 1−δ
Qt−1

fraction of the points,

as asserted.

Finally we mention examples which show that, in some
senses the gaps in Theorem 5.1, Parts 2 and 3 are inherent.

First note that if F = {F tQ → Fq} then Liftm(F) =

{FmQ → Fq} whose distance is Q−m, and so some loss in
the distance is inherent in Part 2 of Theorem 5.1. However,
one could hope that if F ( {F tQ → Fq} then its distance is
preserved by lifting (as in Part 3 of Theorem 5.1). Unfor-
tunately (actually fortunately, since this is where the rate
improvement of codes in Theorem 1.2 comes from) even this
hope is not true. If one takes F to be the binary code with
degree set being all weight one integers, then its lift contains
all the weight one integers as well as some integers of weight
greater than one. The code consisting of only weight one in-
tegers in its degree set has distance exactly 1/2 while codes
that have rate greater than these must have distance strictly
smaller than 1/2 (by the Plotkin bound). This suggests that
distances can reduce under lifts. A search reveals that the
code F ⊆ {F4 → F2} with degree set Deg(F) = {0, 1, 2} has
distance 1/2 while its lift L = Lift2(F) has distance 3/8.
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