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Abstract

Locally testable codes (LTCs) of constant distance that allow the tester to make a linear
number of queries have become the focus of attention recently, due to their elegant connec-
tions to hardness of approximation. In particular, the binary Reed-Muller code of block length
N and distance d is known to be testable with O(N/d) queries, and has a dimension of ≈
N − (logN)log d. The polylogarithmically small co-dimension is the basis of constructions of
small set expanders with many “bad” eigenvalues, and size-efficient PCPs based on a shorter
version of the long code. The smallest possible co-dimension for a distance d code (without any
testability requirement) is ≈ d

2 logN , achieved by BCH codes. This raises the natural question
of understanding where in the spectrum between the two classical families, Reed-Muller and
BCH, the optimal co-dimension of a distance d LTC lies — in other words the “price” one has
to pay for local testability.

One promising approach for constructing LTCs is to focus on affine-invariant codes, whose
structure makes testing guarantees easier to deduce than for general codes. Along these lines,
the authors of [HRZS13] and [GKS13] recently constructed an affine-invariant family of high-
rate LTCs with slightly smaller co-dimension than Reed-Muller codes. In this work, we show
that their construction is essentially optimal among linear affine-invariant LTCs that contain
the Reed-Muller code of the appropriate degree.
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1 Introduction

Locally testable codes (LTCs) have received much attention in recent years. They are error-correcting
codes equipped with a tester, a randomized algorithm that queries the received word at a few
judiciously chosen positions and decides whether the word is a valid codeword. The tester must
accept valid codewords with probability 1 and reject words that are far from the code in Hamming
distance with nontrivial probability. LTCs have garnered much interest due to their connections
to probabilistically checkable proofs (PCPs) and property testing (see the surveys [Gol11, Tre04]).
Many PCP constructions are based on or related to LTCs [BSGH+06, GS06, Din07, BSS08]. The
primary focus thus far has been on LTCs in which the number of queries is constant, and much
progress has been made on constructions in this regime (see for example the line of work culmi-
nating in [Vid13]). There has also been work on LTCs with a sub-linear number of queries (i.e., N ε

queries where N is the block length and ε > 0 is arbitrary) [BSS06, GKS13].
Recently, high-rate LTCs in which the tester is allowed to make a linear number of queries

(i.e., εN queries) have been shown to have surprising connections to central questions in the
theory of approximation algorithms. Specifically, in [BGH+12] a beautiful connection between
such LTCs and the construction of small set expander graphs is presented. Instantiating this
connection with the binary Reed-Muller (RM) code, the authors of [BGH+12] construct small
set expanders whose Laplacian has many small eigenvalues. They also derandomize the “long
code” (hypercube) which underlies all optimal PCP constructions to give a shorter low-degree
version (which they called the “short code”). The low-degree long code has since been used to
construct more size-efficient PCPs, leading to improved hardness results for hypergraph color-
ing [DG13, GHH+14, KS14].

The binary Reed-Muller code RM(r, n) of degree r in n variables encodes a (multilinear) poly-
nomial f ∈ F2[X1, . . . , Xn] of total degree at most r by the vector of its evaluations

(
f(α)

)
α∈Fn2

.
The (minimum) distance of RM(r, n) equals 2n−r. A central ingredient in the above exciting recent
developments is a local testability result for binary RM codes due to [BKS+10]. In the high-rate
regime of relevance to the above connections, the result of [BKS+10] shows the following (one
should think of s as constant, and n as growing in the statement below):

Theorem 1.1 ([BKS+10]). There exists an absolute constant ξ > 0 such that the Reed-Muller code RM(n−
s, n) (of distance 2s) can be tested with 2n−s+1 queries, rejecting a function f : Fn2 → F2 that is 2s/3-far
from RM(n− s, n) with probability at least ξ.

The n-variate binary RM code of constant distance d has dimension≈ N−(logN)log d−1, where
N = 2n, and is testable with 2N/d queries. For the connection to small set expansion in [BGH+12],
a binary linear code C of block length N that is testable with εN queries results in a graph with
vertex set C⊥ (the dual code to C) whose Laplacian has Ω(N) eigenvalues smaller thanO(ε). To get
many “bad” eigenvalues as a function of the graph size, we would like C⊥ to be small compared
to N , i.e., we would like the dimension of C to be as large as possible. This leads to the following
question, which motivates our work: What is the largest dimension of a distance d binary linear code
C ⊂ FN2 that is testable with O(N/d) queries?

Reed-Muller codes give a construction with dimension ≈ N − (logN)log d−1. Achieving higher
dimension would imply small set expanders (SSEs) whose Laplacians have even larger number
of small eigenvalues, and in particular, a dimension of N −Od(logN) would imply polynomially
many small eigenvalues (the existence of such SSEs is necessary if the SSE intractability hypothesis
of [RS10] holds). The only known upper bound on dimension is the Hamming bound ≈ N −
d
2 logN , based just on the distance (without using the testability condition). BCH codes achieve
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(up to lower order terms) the Hamming bound; however, as all codewords in the dual of the BCH
code have Hamming weight close to N/2, the BCH code is not testable with O(N/d) queries.1

In other words, there is a gap between the dimension of the testable distance d Reed-Muller
code, which is ≈ N − (logN)log d−1, and the dimension of the BCH code of distance d, which is
≈ N − d

2 logN (and best possible for distance d). The natural question motivating this work is to
understand how significant a limitation the testability requirement poses on the dimension of the
code, and whether the highest possible dimension of a testable code with distance d is closer to that
of BCH or RM. Unfortunately, this seems to be a difficult problem in general.

As a first step toward the above challenging goal, in this work we focus on proving limitations
in the special case of affine-invariant codes. Affine-invariance generalizes many popular families
of algebraic codes and is a well-studied concept in coding theory. The investigation of the role of
affine-invariance, and invariance in general, in the context of testability were initiated by Kaufman
and Sudan [KS07] and there have been many further works in the area (see, for instance, the
survey by Sudan [Sud11, Section 5] and references therein). Affine-invariant codes are subsets of
functions from FnQ to Fq that are invariant under affine transformations of the domain, where FQ
and Fq are finite fields with FQ extending Fq (see Section 2.1 for a more formal definition in the
case of Q = q).

As it turns out, both Reed-Muller and BCH are affine-invariant codes. Furthermore, Guo et
al. [GKS13] as well as Haramaty et al. [HRZS13] show constructions of additional classes of codes
that are testable with O(N/d) queries and provide slight improvements to the dimension of the
Reed-Muller code. Interestingly, these improved codes, too, are affine-invariant. It seems worth-
while, therefore, to initially restrict our attention to affine-invariant codes and gain further insights
into the problem. The rich structure of affine-invariance gives us some handle for understanding
the constraints imposed by local testability. For example, although we know virtually no lower
bounds for LTCs in the constant-query regime, it was shown in [BSS11] that affine-invariant LTCs
for a constant number of queries cannot have constant rate.

Affine-invariance also offers many advantages for constructing locally testable codes. It turns
out that their structure means that only fairly weak conditions have to be satisfied in order for a
code to be testable. For example, it has been shown that any affine-invariant linear code which is
characterized by constant-weight constraints is testable with constantly many queries [KS07].2

In the constant distance (linear query) regime, affine-invariant codes have yielded LTCs with
the highest dimension known thus far, and improving slightly upon binary Reed-Muller codes.
By using a technique known as lifting of affine-invariant codes, the works [GKS13, HRZS13] give
constructions of a class of affine-invariant linear-query LTCs that improve upon the dimension of
the RM code. For some of these codes, with lower dimension, [HRZS13] shows the soundness
guarantee that is necessary to allow them to replace the RM code in the application of [BGH+12].
Without this stronger guarantee, [GKS13] gives a code C ⊆ {0, 1}N (where N = 2n) of distance d
and dimension

dim(C) ≥ N −
(

1 +
logN

log d− 1

)log d−1

, (1)

which is testable with 2N/d queries. This code contains the binary code RM(n− log d, n), as do the
corresponding codes of [HRZS13]. Hence, it is natural to ask for the optimal dimension of a code

1It is known that for linear codes, one can assume without loss of generality that the tester checks orthogonality to a
set of dual codewords (see [BSHR05]).

2In fact, the testability also extends to non-linear codes [BFH+13], but with an enormous price in the error analysis.
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containing the RM code that still has the desired testability properties. Note that the (extended)
BCH code of distance d (which does not satisfy the testability requirements) also contains RM(n−
log d, n).

In this work, we show that the code of [GKS13] is essentially optimal. That is, we show for
constant d that any linear affine-invariant code C ⊆ {F2n → F2} of distance d which is testable
with 2N/d queries (the number of queries needed for testing the RM code of the same distance)
and contains RM(n− log d, n) has dimension at most

dim(C) ≤ N −
(

logN

log2 d

)log d−1

,

where N = 2n (see Theorem 4.9 for the formal statement of the result). We also show that any
linear affine-invariant code C satisfying (1) must contain the RM code of degree logN − (log d −
1) log(n+ log d− 1) + Ωd(1), implying that our assumptions are not far from the truth.

Our results suggest that any LTC which improves noticeably on the Reed-Muller code in the
linear query regime would need techniques beyond the known ones based on affine-invariance.

Paper Organization. In Section 2, we give definitions and preliminaries on affine-invariant LTCs.
Section 3 then describes previous work that complements our results. In Section 4, we prove
our lower bound on affine-invariant codes that contain high-order Reed-Muller codes. Finally,
Section 5 provides some justification for why containment of a high-order Reed-Muller code is a
reasonable assumption. Omitted proofs appear in the appendices.

2 Preliminaries

2.1 Our Setup

We begin by defining some basic terms about codes.

Definition 2.1 (Dual of a code). If C ⊆ FN is a linear code, then the dual code of C is C⊥ = {u ∈ FN :
〈u,w〉 = 0 for all w ∈ C}.

Definition 2.2 (δ-far). A word w ∈ FN is said to be δ-far from a linear code C ⊆ FN if minc∈C ∆(w, c) ≥
δN , where ∆(x, y) denotes the Hamming distance between two vectors.

We now define the notion of a (weak) LTC.

Definition 2.3 (Canonical testers). Suppose C ⊆ FN is a linear code. A k-query canonical tester for
C is a distribution D over subsets I ⊆ {1, 2, . . . , N} satisfying |I| ≤ k; invoking the tester on a word
w ∈ FN consists of sampling I ∼ D and accepting w if and only if w|I ∈ C|I .

Definition 2.4 (LTCs). A linear code C ⊆ FN is said to be a (k, ε, ρ)-LTC if there exists a k-query canonical
tester that always accepts elements of C and rejects all w 6∈ C that are ρ-far from C with probability at least
ε. The parameter ε is known as the soundness of the tester.

Our definition for LTCs and testers is motivated by a result of Ben-Sasson, et al. [BSHR05],
which shows that any general tester for an LTC can be reduced to the above canonical form. To-
gether with the linearity, it follows that a necessary condition for a linear code to be testable is the
existence of a dual codeword of low Hamming weight.
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Fact 2.5 (Existence of a low weight dual codeword). Let C ⊆ FN be a linear LTC of distance at least
2 that is testable with k queries. Then, for any 1 ≤ j ≤ N , there must exist a nonzero w ∈ C⊥ such that
wj 6= 0 and |{i ∈ {1, . . . , N} : wi 6= 0}| ≤ k, i.e., w has Hamming weight at most k.

In this work, we will view binary linear codes of block length 2n as functions F2n → F2, and
we will often write N = 2n. All logarithms will be base 2 unless otherwise specified.

We next define affine-invariant codes, which are the focus of this work.

Definition 2.6. Let FQ be a field of size Q. We call a function A : FtQ → FtQ an affine transformation if
A(x) = Mx+ b for some matrix M ∈ Ft×tQ and vector b ∈ FtQ.

Definition 2.7. Let Fq be a field of size q, and let FQ be its extension field of size Q = qm. Then, we call
a code F ⊆ {FtQ → Fq} affine-invariant if for every f ∈ F and affine transformation A : FtQ → FtQ, the
function f ◦A is in F .

The task is to consider binary affine-invariant codes C ⊆ {f : F2n → F2} with fixed distance d
such that C is an LTC with locality O

(
N
d

)
. We wish to find the optimal rate of such a code C.

2.2 Affine-Invariant Codes

From now on, we will only consider univariate affine-invariant codes, that is, subsets of {f : F2n →
F2}. This is without loss of generality, as (FQ)t is isomorphic to FQt for all t and prime powers Q,
and this preserves affine-invariance ([BSS11]).

Here, we present some basic facts that will allow us to study affine-invariant codes by ana-
lyzing their degree sets (see, for example, [KS07]). The definitions below are stated in their full
generality for fields of size q, although we will primarily be concerned with the case q = 2.

Definition 2.8. For a function f : Fqn → Fq, write it as the unique polynomial f(x) =
∑qn−1

e=0 cex
e of

degree at most qn − 1 which agrees with f on Fqn . Then, the support of f , denoted Supp(f), is the set of
degrees with non-zero coefficients in f ; that is, Supp(f) = {e : ce 6= 0}.

Definition 2.9. Let F ⊆ {Fqn → Fq} be a code. We define Deg(F), the degree set of F , to be the set
Deg(F) =

⋃
f∈F Supp(f).

Definition 2.10. Suppose D ⊆ {0, 1, . . . , qn − 1}. We define the T (D) ⊆ {Fqn → Fq} to be the trace
code on D defined by

T (D) =

{(∑
e∈D

Tr(cex
e)

)
∈ (Fqn → Fq) : ce ∈ Fqn

}
, (2)

where Tr : Fqn → Fq is the field trace function given by Tr(x) = x+ xq + xq
2

+ · · ·+ xq
n−1 .

Let (mod∗ Q) refer to the operation that maps non-negative integers into {0, 1, . . . , Q−1} such
that a (mod∗ Q) = 0 if a = 0, while if a 6= 0, then a (mod∗ Q) = b, where b ∈ {1, 2, . . . , Q − 1} is
the unique integer such that a ≡ b (mod Q− 1).

Definition 2.11. For any e ∈ {0, 1, . . . , qn − 1}, we say that e′ ∈ {0, 1, . . . , qn − 1} is a q-shift of e if
there exists some nonnegative integer i such that e′ = qi · e (mod∗ qn). Furthermore, we define the shift
closure of e to be the set of all shifts of e:

shift(e) = {eqi (mod∗ qn) : i ∈ {0, 1, . . . , n− 1}.
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The shift closure of a set D ⊆ {0, 1, . . . , qn − 1} is then defined to be the union of the shift closures of its
elements:

shift(D) =
⋃
e∈D

shift(e).

Finally, D is said to be shift-closed if D = shift(D).

An alternate view of shift-closed sets arises by viewing an element e ∈ D as a vector in
{0, 1, . . . , q − 1}n given by the base q representation of e. The q-shifts of e are precisely the in-
tegers whose corresponding vectors (obtained by taking the base q representation) are cyclic shifts
of the vector associated with e. A set D is, therefore, shift-closed if the set is closed under taking
“cyclic” shifts of the associated base q representations.

Definition 2.12. Let e, e′ ∈ {0, 1, . . . , qn − 1}. Let e =
∑n−1

i=0 eiq
i and e′ =

∑n−1
i=0 e

′
iq
i be the base

q representations of e and e′, respectively. We say that e′ lies in the q-shadow of e if e′i ≤ ei for all
0 ≤ i ≤ n− 1. We will denote this as e′ ≤q e.

A set D ⊆ {0, 1, . . . , qn − 1} is said to be q-shadow-closed if

{e′ : e′ ≤q e for some e ∈ D} = D.

When q is understood from context, we will simply say that D is shadow-closed.

It is known that known that linear affine-invariant codes can be characterized by their corre-
sponding degree sets.

Theorem 2.13. Let F ⊆ {Fqn → Fq} be a linear affine-invariant code. Then, D = Deg(F) is the
unique set D ⊆ {0, 1, . . . , qn − 1} that is shift-closed and shadow-closed such that F equals the trace code
T (D). Conversely, if D ⊆ {0, 1, . . . , qn − 1} is shift-closed and shadow-closed, then T (D) is a linear
affine-invariant code with degree set D.

Moreover, the dimension of a linear affine-invariant code is given by the size of its degree set.

Theorem 2.14. If F ⊆ {Fqn → Fq} is a linear affine-invariant code, then dim(F) = |Deg(F)|.

3 Background and Previous Work

We now state some results on binary affine-invariant codes that motivate our work.

Definition 3.1. The 2-weight of a degree e ∈ {0, 1, . . . , 2n− 1}, denoted wt2(e), is the number of ones in
the binary representation of e.

Recall the definition of a trace code (equation (2), with q = 2). It is a folklore fact that the
Reed-Muller code is equivalent to the univariate code

RM(r, n) = T ({e ∈ {0, 1, . . . , 2n − 1} : wt2(e) ≤ r}).

Furthermore, the dual of the extended BCH code of distance d = 2t+ 2 can be expressed as

dual-eBCH(n, t) = T ({0, 1, . . . , t}).
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Similarly, the extended BCH code itself is expressible as

eBCH(n, t) = T (D),

where D ⊆ {0, 1, . . . , 2n − 1} is the set of all degrees e such that the zeros in the n-bit binary
representation of e do not all lie within a cyclic block of length log d− 1. Note that we have

RM(n− log d, n) ⊆ eBCH(n, t),

and both are linear affine-invariant codes of distance d. Moreover, RM(n− log d, n) has dimension

n−log d∑
i=0

(
n

i

)
≈ N −

(
en

log d− 1

)log d−1

,

while eBCH(n, t) has rate roughly N − dn
2 . However, RM(n − log d, n) can be tested with 2N

d
queries [BKS+10, AKK+05]; on the other hand, we cannot hope to test eBCH(n, t) with the same
number of queries (for d > 4), due to Fact 2.5 and the fact that dual-eBCH(n, t) has relative distance
close to 1/2 (see [MS81]).

3.1 Testable Codes Surpassing Reed-Muller

Guo, et al. [GKS13] show the existence of linear affine-invariant codes of linear locality that contain
the generalized Reed-Muller code of appropriate order. In particular, for n = `m, where ` = log d−
1 and m is any positive integer, they present a multivariate affine-invariant code C ⊆ {Fm

2`
→ F2}

of block length N = 2n which satisfies dim(C) = N − (m+ 1)` = N −
(

1 + n
log d−1

)log d−1
.

There is also a univariate analogue of the above codes with identical distance and dimension.
See B.1 of Appendix B for details.

3.2 Consequence of the Extended Weil Bound

In [KL11], the authors prove an extension of the Weil bound, which implies that sparse linear
affine-invariant codes have relative distance close to 1/2. This yields a lower bound on the dimen-
sion of any sparse linear affine-invariant code that has relative distance much less than 1/2.

Theorem 3.2 (consequence of [KL11]). Let F ⊆ {F2n → F2} be a linear affine-invariant code of relative

distance ≤ 1
2 − δ, for some δ > 0. Then for any ε > 0, |F| ≥ 2Ω(n

3
2−ε), i.e., dim(F) = Ω(n

3
2
−ε).

This theorem does not appear explicitly in [KL11], but it can be deduced from their techniques.
For completeness, we include the details in Appendix A.

Because we are interested in very large codes C whose duals are sparse, we can apply Theo-
rem 3.2 to F = C⊥ to obtain an upper bound on the dimension of C.

Corollary 3.3. If C is a linear affine-invariant code of distance d ≥ 5 testable with 2N
d queries, then

dim(C⊥) ≥ n3/2−o(1).

Remark. Although we are able to prove much stronger lower bounds in the following section,
our results only hold when C⊥ contains (the indicator of) a low-dimensional subspace. The work
of [KL11] does not require this assumption.
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4 Upper Bounds on the Dimension of C

By Theorem 2.14, to show that dim(C) is small, it suffices to show that Deg(C) is small. From now
on, we will focus on showing that under our assumptions, we can find many degrees which cannot
be in Deg(C).

We will assume throughout that C ⊆ {F2n → F2} contains the Reed-Muller code RM(n −
log d, n) and is testable with 2N/d queries. Note that the containment assumption implies that
Deg(C) contains all degrees of 2-weight at most n − log d. Also, since C⊥ is contained in the dual
of RM(n − log d, n), all dual codewords of Hamming weight 2N/d correspond to (indicators of)
affine subspaces of dimension n− log d+1. Furthermore, Fact 2.5 guarantees the existence of some
w ∈ C⊥ of Hamming weight 2N/d such that w0 6= 0. Therefore, C⊥ must contain (the indicator of)
a linear subspace of dimension n− log d+ 1.

4.1 Matrix Determinant Formulation

Recall that an affine-invariant code is specified by its degree set. Thus, if e ∈ Deg(C) and the
indicator vector of a subspace S is in the dual code C⊥, then we must have∑

α∈S
αe = 0. (3)

We will often abuse notation and say that if (3) holds, then S is orthogonal to e, or e passes (the
test defined by) S.

We have assumed that any degree e of 2-weight at most n − log d is in Deg(C). Thus, let us
consider which degrees e of 2-weight exactly n−log d+1 can be contained in Deg(C). The following
gives an equivalent condition for when a subspace of dimension n− log d+ 1 is orthogonal to e.

Lemma 4.1. Suppose e = 2i1 + 2i2 + · · · + 2ik is a degree of 2-weight k = n − log d + 1, for ij distinct.
Suppose S is a subspace of dimension k, and let α1, α2, . . . , αk be an F2-basis for S. Then S is orthogonal
to e if and only if the determinant of

Me(α1, α2, . . . , αk) :=


α2i1

1 α2i1
2 · · · α2i1

k

α2i2
1 α2i2

2 · · · α2i2
k

...
...

...
α2ik

1 α2ik
2 · · · α2ik

k


is zero. In particular, whether Me(α1, α2, . . . , αk) is zero does not depend on the choice of basis of S.

Proof. S is orthogonal to e if and only if
∑

α∈S α
e = 0. Note that

∑
α∈S

αe =
∑

λ1,...,λk∈{0,1}

k∏
j=1

(λ1α1 + λ2α2 + · · ·+ λkαk)
2ij

=
∑

λ1,...,λk∈{0,1}

k∏
j=1

(λ1α
2ij
1 + λ2α

2ij
2 + · · ·+ λkα

2ij
k )

=
∑
π∈Sn

k∏
j=1

α2
iπ(j)

j ,

7



where the last sum ranges over all permutations of {1, 2, . . . , n}. The final line follows because
any term αt11 α

t2
2 · · ·α

tk
k that has some tj of 2-weight at least 2 must also have some tj = 0, hence

implying that such a term must occur an even number of times in the sum. Since we are work-
ing over fields of characteristic 2, it follows that such a term cannot have a nonzero coefficient.
Moreover, the above quantity is equal to the permanent of Me(α1, α2, . . . , αk), which, over fields
of characteristic 2, is equal to detMe(α1, α2, . . . , αk). This proves the claim.

4.2 Containment in Extended BCH

The determinant formulation of Lemma 4.1 allows us to show that a code satisfying our desired
conditions must lie inside the extended BCH code of the same distance.

Theorem 4.2. Suppose C is a linear affine-invariant code of distance d = 2t + 2 that contains RM(n −
log d, n) and is locally testable with 2N

d queries. Then, C ⊆ eBCH(n, t).

Proof. First, we consider the degree e∗ = 20 + 21 + 22 + · · ·+ 2n−log d of 2-weight n− log d+ 1. We
will show that e∗ 6∈ Deg(C).

Let S be an arbitrary subspace of dimension k = n− log d+ 1. We will show that S cannot be
orthogonal to e∗. Let α1, α2, . . . , αk be an F2-basis for S. Then,

Me∗(α1, α2, . . . , αk) =



α1 α2 · · · αk

α2
1 α2

2 · · · α2
k

...
...

...

α2k−2

1 α2k−2

2 · · · α2k−2

k

α2k−1

1 α2k−1

2 · · · α2k−1

k


,

which has been studied as the (transpose) Moore matrix, whose (i, j) entry is α2i−1

j . The determi-
nant of the matrix is known to be∏

λ1,λ2,...,λk∈{0,1} not all zero

(λ1α1 + λ2α2 + · · ·+ λkαk),

i.e., the product of all non-trivial F2-linear combinations of α1, α2, . . . , αk. Since the αi are F2-
linearly independent by choice, it follows that the above determinant is nonzero. Thus, Lemma 4.1
implies that S cannot be orthogonal to e∗. Since S was arbitrary, any C whose degree set contains
e∗ would not have dual distance 2N

d and would therefore not be locally testable with the desired
locality.

Now recall that for d = 2t+ 2, dual-eBCH(n, t) has degree set

Deg(dual-eBCH(n, t)) = shift({0, 1, 2, . . . , t}),

which implies that Deg(eBCH(n, t)) = {0, 1, . . . , 2n − 1} \ T , where T is the set of all degrees e
for which the zeros in the n-bit base-2 representation of e lie in a consecutive (cyclic) block of size
log d − 1. Note that for any e ∈ T , there is some cyclic shift of e∗ in its shadow. Since Deg(C)
does not contain e∗, and affine-invariant codes are closed under shifts and shadows, it follows
that Deg(C) ∩ T = ∅. Hence, Deg(C) ⊆ Deg(eBCH(n, t)), and so, C ⊆ eBCH(n, t).
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4.3 Dimension Bound via Local Transformations of Degree

Now, we show that for any degree e of 2-weight n− log d+ 1 that does not pass a fixed subspace
S of dimension n− log d+ 1, we can perform a slight perturbation to e to obtain another degree e′

of 2-weight n− log d+ 1 that does not pass S.
In other words, for any subspace S, the existence of one degree that does not pass S implies

many others.

First, let us prove some lemmas which will be useful for the proof of the main result.

Fact 4.3. Let λ ∈ F2n be nonzero. Then, a subspace S is orthogonal to a degree e if and only if the subspace
λS = {λs : s ∈ S} is orthogonal to e.

Lemma 4.4. Let m < n and α1, α2, . . . , αm ∈ F2n . There exists a nonzero λ ∈ F2n such that

Tr(λα1) = Tr(λα2) = · · · = Tr(λαm) = 0. (4)

Proof. Note that (Tr(λα1),Tr(λα2), . . . ,Tr(λαm)) ∈ {0, 1}m for all λ ∈ F2n \ {0}. Thus, by the
pigeonhole principle, there exist two distinct λ1, λ2 ∈ F2n \ {0} for which

(Tr(λ1α1),Tr(λ1α2), . . . ,Tr(λ1αm)) = (Tr(λ2α1),Tr(λ2α2), . . . ,Tr(λ2αm).

Thus, by linearity of trace, we see that (4) holds for λ = λ1 − λ2.

Now, we are ready to prove one of the main technical theorems.

Theorem 4.5. Suppose S is a subspace of dimension k = n − log d + 1. Let e = 2i1 + 2i2 + · · · + 2ik

be a degree of 2-weight k that does not pass S. Then, for any integer 1 ≤ r ≤ k, there exists u ∈
{0, 1, . . . , n− 1} \ {i1, i2, . . . , ik} such that e′ = e− 2ir + 2u does not pass S.

Proof. Let {j1, j2, . . . , j`} = {0, 1, . . . , n − 1} \ {i1, i2, . . . , ik}. Let α1, α2, . . . , αk be a basis for S.
Then, by Lemma 4.4, there exists some nonzero λ ∈ F2n such that Tr(λαi) = 0 for each i. Scaling
S by λ, we may assume that Tr(α1) = Tr(α2) = · · · = Tr(αk) = 0.

For ease of notation, we will write α[i] for α2i . Consider the matrix

M =



α
[i1]
1 α

[i1]
2 · · · α

[i1]
k

...
...

...

α
[ir−1]
1 α

[ir−1]
2 · · · α

[ir−1]
k∑`

t=1 α
[jt]
1

∑`
t=1 α

[jt]
2 · · ·

∑`
t=1 α

[jt]
k

α
[ir+1]
1 α

[ir+1]
2 · · · α

[ir+1]
k

...
...

...

α
[ik]
1 α

[ik]
2 · · · α

[ik]
k


We observe that detM is equal to the determinant of the following matrix M ′ which is obtained
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by replacing the rth row of M with the sum of all rows of M :

M ′ =



α
[i1]
1 α

[i1]
2 · · · α

[i1]
k

...
...

...

α
[ir−1]
1 α

[ir−1]
2 · · · α

[ir−1]
k∑

0≤t<n,t6=ir α
[t]
1

∑
0≤t<n,t6=ir α

[t]
2 · · ·

∑
0≤t<n,t6=ir α

[t]
k

α
[ir+1]
1 α

[ir+1]
2 · · · α

[ir+1]
k

...
...

...

α
[ik]
1 α

[ik]
2 · · · α

[ik]
k


However, note that

∑
0≤t<n,t6=ir α

[t]
s = α

[ir]
s + Tr(αs) = α

[ir]
s for s = 1, 2, . . . , k. Hence, M ′ =

Me(α1, . . . , αk). By Lemma 4.1, since S is not orthogonal to e, we must have det(Me(α1, . . . , αk)) 6=
0. It follows that detM 6= 0. Noting that

detM =
∑̀
s=1

detMes(α1, . . . , αk),

where es = e − 2ir + 2js . Thus, there exists some s for which detMes(α1, . . . , αk) 6= 0. Hence, we
conclude that the desired statement holds for u = js.

A corollary of the above theorem is that a code C with our desired parameters must have dual
dimension Ω(n2), which already improves on the bound of Corollary 3.3 obtained from [KL11].

Corollary 4.6. Suppose C ⊆ {F2n → F2} is a linear affine-invariant code of distance d that contains
RM(n− log d, n). Then, dim(C⊥) = Ω(n2).

Proof. Again, write k = n − log d + 1. Recall that e∗ = 20 + 21 + · · · + 2k−1. We know that
e∗ 6∈ Deg(C) from the proof of Theorem 4.2. Therefore, by Theorem 4.5, we conclude that there exist
j0, j1, . . . , jk−1 ∈ {k, k+ 1, . . . , n− 1}, such that ei = (e∗ − 2i + 2ji) 6∈ Deg(C) for i = 0, 1, . . . , k− 1.
Moreover, at least a constant fraction of e0, e1, . . . , ek−1 are shift independent (i.e., not shifts of each
other), and so, at least n ·Ω(k) = Ω(n2) degrees of 2-weight k must not lie in Deg(C), which proves
the result.

Theorem 4.5 shows that for a given degree e that does not pass a fixed subspace S, one can
shift any 1 in the binary representation of e to some position that is currently occupied by a 0
and obtain another degree that does not pass S. Next, we try to prove an analogue (Theorem 4.8)
which allows us to shift any desired 0 to a position occupied by a 1. First, we prove a lemma.

Lemma 4.7. Suppose α1, α2, . . . , αk are F2-linearly independent, and let v0, . . . , vn−1 ∈ Fk2n be defined as

vi = (α2i

1 , α
2i

2 , . . . , α
2i

k ),

where k = n− log d+ 1. Then, there is no set of at most n
log d of the vi that are linearly dependent.

Proof. Suppose, for the sake of contradiction, that there exists t ≤ n
log d such that λ1vi1 +λ2vi2 +· · ·+

λtvit = 0, where i1, i2, . . . , it are distinct, and not all of the λ1, λ2, . . . , λt ∈ F2n are zero. Without
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loss of generality, suppose 0 ≤ i1 < i2 < · · · < it ≤ n − 1. Let jr = (ir+1 − ir) (mod n), where
it+1 = i1. Since j1 + j2 + · · · + jt = n, there exists some r such that jr ≥ n

t ≥ log d. Then, note
that vir+1 , vir+1+1, · · · , vir+1+(k−1) are linearly independent (where subscripts on v are modulo n):
Letting e∗ = 20 + 21 + · · ·+ 2k−1, we have

det


vir+1

vir+1+1
...

vir+1+(k−1)

 = (detMe∗(α1, α2, . . . , αk))
2ir+1 6= 0,

where the last statement is shown in the proof of Theorem 4.2. However, vi1 , vi2 , . . . , vit appear
among vir+1 , vir+1+1, . . . , vir+1+(k−1). Thus, we obtain a contradiction.

Theorem 4.8. Suppose S is a subspace of dimension k = n− log d+ 1. Let e = 2i1 + 2i2 + · · ·+ 2ik be a
degree of 2-weight k that does not pass S. Then, for any integer 0 ≤ u ≤ n − 1 with u 6∈ {i1, i2, . . . , ik},
there exist at least n

log d − 1 values of r ∈ [k] for which e+ 2u − 2ir is a degree that does not pass S.

Proof. Let u 6∈ {i1, i2, . . . , ik}, and let α1, α2, . . . , αk be a basis for S. Because e does not pass
S, we know that the matrix M = Me(α1, α2, . . . , αk) has a nonzero determinant. Write wt =
(α2it

1 , α2it
2 , . . . , α2it

k ) for t = 1, 2, . . . , k, i.e., wt is the tth row of M . Also, let v = (α2u
1 , α2u

2 , . . . , α2u

k ).
Since M has nonzero determinant, its row span is all of Fk2n , and we can find λ1, λ2, . . . , λk ∈ F2n

such that v = λ1w1 + λ2w2 + · · ·+ λkwk.
Suppose λj 6= 0. Then, the linear dependence

λ1w1 + · · ·+ λj−1wj−1 + λj(wj + λ−1
j v) + λj+1wj+1 + · · ·λkwk = 0

implies that

0 = det



w1...
wj−1

wj + λ−1
j v

wj+1...
wk


= detM + λ−1

j detMe′(α1, α2, . . . , αk),

where e′ = e + 2u − 2ij . Since detM 6= 0, we have detMe′(α1, α2, . . . , αk) 6= 0, implying that e′

does not pass S. To conclude, simply note that Lemma 4.7 implies that there are at least n
log d − 1

values of j for which λj 6= 0. Thus, the desired conclusion follows.

Remark. The bounds in Theorems 4.5 and 4.8 are tight, as they are achieved by the (univariate
analogue) of the codes of [GKS13]. See B.2 in Appendix B for details.

Now, we are ready to prove the main theorem, which proves a lower bound on dim(C⊥).

Theorem 4.9 (Main). Let C ⊇ RM(n− log d, n) be a linear affine-invariant code of block length N = 2n

that has distance d and is testable with 2N
d queries. Then, dim(C⊥) ≥

(
n

log2 d

)log d−1
.

Proof. Fix a subspace S of dimension n− log d+ 1 whose indicator is in C⊥. Let k = n− log d+ 1.
Recall that e∗ = 20 + 21 + · · ·+ 2k−1 does not pass S.
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Consider the following procedure. Let ek = e∗. Then, for j = k, k+ 1, . . . , n− 1 (in succession),
we perform either one of the following steps:

• Set ej+1 = ej .

• Choose an ij ∈ {0, 1, . . . , n − 1} such that 2ij appears in the binary representation of ej and
so that ej + 2j − 2ij does not pass S. Set ej+1 = ej + 2j − 2ij .

It is clear that at the end of the procedure, en will be a degree of 2-weight k that does not pass
S. Moreover, for each j in the procedure, there will be at least n

log d choices for setting ej+1 (by
Theorem 4.8). On the other hand, any final en could have been obtained in at most (log d)log d−1

ways. Thus, it follows that there are at least
(

n
log d

)log d−1/
(log d)log d−1 =

(
n

log2 d

)log d−1
degrees

that do not pass S.

5 Reed-Muller Containment Assumption

Until now, we have analyzed affine-invariant codes C ⊆ {F2n → F2} that contain RM(n− log d, n).
Let us provide some justification for this assumption by showing that any linear affine-invariant
code with large dimension must contain a Reed-Muller code of large order.

Theorem 5.1. Suppose C ⊆ {F2n → F2} is a linear affine-invariant code such that RM(s, n) 6⊆ C, for

some s = n− (log d− 1) log(n+ log d− 1) + Ωd(1). Then, dim(C) ≤ 2n −
(

1 + n
log d−1

)log d−1
.

Proof. Suppose C satisfies the conditions of the hypothesis. Recall that RM(s, n) is the trace code
with degree set consisting of precisely those 0 ≤ e < 2n of 2-weight at most s. Thus, there exists
some degree of 2-weight at most s that does not appear in Deg(C). Since the degree set of C is
shadow-closed, it then follows that there exists e of 2-weight exactly s that does not appear in
Deg(C). Note that there are n shifts of e (possibly repeated). For any shift e′ of e, there are 2n−s

degrees that contain e′ in their shadow, for a total of n · 2n−s. Moreover, any of these degrees may
appear up to n times (since each degree contains at most n shifts of e in its shadow). Thus, there
are at least n · 2n−s/n = 2n−s distinct degrees that cannot be in Deg(C). This shows that

dim(C) ≤ 2n − 2n−s ≤ 2n −
(

1 +
n

log d− 1

)log d−1

for s = n− (log d− 1) log(n+ log d− 1) + Ωd(1).

Therefore, any affine-invariant code that is expected to improve on the testable codes of [GKS13]
and [HRZS13] must contain a Reed-Muller code of order n − Od(1) log n. However, note that the
above theorem holds for any linear affine-invariant code and does not use testability. It seems that
using the testability assumption should yield a tighter bound, which is a promising direction for
future work.
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A Application of the Extended Weil Bound

Let us show how Theorem 3.2 follows from the extended Weil bound. The main theorem of [KL11],
specialized to our setting (where we set p = 2, χ(x) ≡ Tr(x) and g(x) ≡ 0), can be stated as follows.

Theorem A.1 ([KL11]). Let f(x) be the sum of k ≥ 1 monomials, each of 2-weight at most d. Then, either
Tr(f(x)) is constant over all x ∈ F2n , or∣∣Ex∈F2n

[Tr(f(x))]
∣∣ ≤ 2

− n

4d22dk .

For the remainder of this section, assume F is a linear affine-invariant code, and let D =
Deg(F). Let R = {1, 3, 5, . . . , 2n − 1} be the set of odd degrees, and set R′ = D ∩R.

Let us bound the maximum possible 2-weight of a degree in D in terms of |D| and |R′|.

Lemma A.2. Let r be the maximum 2-weight of a degree in D. Then, r ≤ log |D|.

Proof. Pick a degree e ∈ D of 2-weight r. There are exactly 2r degrees in the shadow of e. Since D
is shadow-closed, 2r ≤ |D|, as desired.

Lemma A.3. Suppose |D| > 1. Let r be the maximum 2-weight of a degree in D. Then, r ≤ log |R′|+ 1.
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Proof. Observe that we can pick a degree e ∈ R′ of weight r ≥ 1 (since |D| > 1 and D is shift-
closed). Note that there are 2r−1 odd degrees in the shadow of e. Thus, 2r−1 ≤ |R′|, which implies
the claim.

Next, we prove an upper bound on |R′| in terms of |D|.

Lemma A.4. Suppose |D| > 1. Then, |R′| ≤ |D| log2 |D|
n .

Proof. Note that for any nonzero degree e ∈ D, there are at least n
wt2(e) ≥

n
log |D| distinct shifts of e,

by Lemma A.2. Moreover, for any nonzero degree e ∈ D, there are at most wt2(e) ≤ log |D| shifts
of e that lie in R′. Since D contains |D| − 1 nonzero degrees, we see that

|R′| ≤ |D| − 1

n/ log |D|
· log |D| ≤ |D| log2 |D|

n
,

as desired.

Now, we are ready to prove Theorem 3.2. Recall the statement:

Theorem 3.2 (restated). Let F ⊆ {F2n → F2} be a linear affine-invariant code of relative distance

≤ 1
2 − δ, for some δ > 0. Then for any ε > 0, |F| ≥ 2Ω(n

3
2−ε), i.e., dim(F) > Ω(n

3
2
−ε).

Proof. Suppose the codeF ⊆ {F2n → F2} satisfies the hypothesis of Theorem 3.2. LetD = Deg(F).
Since the code has relative distance 1

2 − δ, |D| > 1.

For the sake of contradiction, assume that dim(F) ≤ O(n
3
2
−ε) for some ε > 0. Then,

|D| ≤ O(n
3
2
−ε). (5)

We have that F = T (R′ ∪ {0}), since each nonzero degree in D has some shift contained
in R′. Therefore, any h(x) ∈ F can be written as Tr(f(x)) for some f(x) that is a sum of at most
k = |R′|+1 monomials. Moreover, by Lemma A.3, we can guarantee that each of these monomials
has 2-weight at most d = log |R′|+ 1. Then, Theorem A.1 implies that either h is constant or

|Ex∈F2n
[h(x)]| ≤ 2

− n
8(log |R′|+1)2·|R′|(|R′|+1) .

Assume h is not constant. By Lemma A.4, we have |R′| ≤ |D| log2 |D|
n , and so,

|Ex∈F2n
[h(x)]| ≤ exp

(
−Ω

(
n3

|D|2 log4 |D| · (log(|D| log2 |D|)− log n+ 1)2

))
It is now straightforward to observe that (5) implies that

|Ex∈F2n
[h(x)]| → 0

as n → ∞. However, this implies that the relative Hamming weight of any nonconstant h(x)
approaches 1

2 in the limit n→∞. Furthermore, any (nonzero) constant h(x) has relative Hamming
weight 1. Hence, the relative distance of F approaches 1

2 in the limit n → ∞, which contradicts
the assumption that the relative distance is ≤ 1

2 − δ. This concludes the proof of Theorem 3.2.
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B Univariate Constructions of Codes

Recall that [GKS13] gives a linear affine-invariant code C ⊆ {Fm
2`
→ F2}with block length N = 2n,

where n = `m. For ` = log d − 1, the code has distance d and is testable with 2N/d queries.
Moreover, C contains the multivariate Reed-Muller code RM(n− log d, n).

The above code is obtained by “lifting” a parity check code of smaller block length and hap-
pens to be multivariate. In our work, we are concerned with dimension bounds on univariate codes.
As it turns out, the code of [GKS13] has a univariate analogue, i.e., a subset of {F2n → F2}. We
provide a construction of this univariate code which does not involve lifting.

B.1 Subspaces from Subfields

Let us try to construct a univariate linear affine-invariant code C ⊆ {F2n → F2} that has distance
d > 1 and is testable with 2N/d queries, where N = 2n. Again, we consider C ⊇ RM(n− log d, n).
Recall from Fact 2.5 that in order for C to be testable with the desired locality, there must be a
codeword in w ∈ C⊥ of Hamming weight at most 2N/d such that w0 6= 0. It is known that
RM(n−log d, n) has dual distance 2N/d, and the dual codewords of minimum weight are precisely
the affine subspaces of dimension n−log d+1. Hence,w must be (the indicator of) a linear subspace
S of the aforementioned dimension.

Hence, we will consider a fixed subspace S of dimension n − log d + 1 and consider which
degrees we can take in Deg(C). We will say that a degree e passes the subspace S if∑

a∈S
ae = 0.

The above condition is necessary for us to be able to take e in Deg(C).
Let us again write ` = log d − 1. Assume ` | n, so that F2` is a subfield of F2n . Write n = `m.

We can then consider subspaces S of the form

S = λ1F2` + λ2F2` + · · ·+ λm−1F2` , (6)

where λA is used to mean {λa : a ∈ A}.

16



Now, a degree e = 2i1 + 2i2 + · · ·+ 2iu passes S if and only if

0 =
∑
a∈S

ae

=
∑
a∈S

u∏
j=1

a2ij

=
∑

a1,a2,...,am−1∈F2`

u∏
j=1

(λ1a1 + λ2a2 + · · ·+ λm−1am−1)2ij

=
∑

a1,a2,...,am−1∈F2`

u∏
j=1

(
(λ1a1)2ij + (λ2a2)2ij + · · ·+ (λm−1am−1)2ij

)
=

∑
a1,a2,...,am−1∈F2`

∑
e1,...,em−1

(λ1a1)e1(λ2a2)e2 · · · (λm−1am−1)em−1

=
∑

e1,...,em−1

λe11 λ
e2
2 · · ·λ

em−1

m−1

∑
a∈F

2`

ae1

∑
a∈F

2`

ae2

 · · ·
∑
a∈F

2`

aem−1

 . (7)

where in the last two equations, e1, . . . , em−1 range over all e1, . . . , em−1 with distinct supports in
their binary expansion, such that e1 + · · ·+ em−1 = e. Observe that

∑
a∈F2t

aej 6= 0 if and only if ej
is a positive integral multiple of 2` − 1. Hence, the above condition would be guaranteed for e if
there happens to be no way to write e as a sum e = e1 + e2 + · · ·+ em−1 such that (1.) e1, . . . , em−1

have distinct supports in their binary expansion, and (2.) e1, e2, . . . , em−1 are all positive multiples
of 2` − 1.

Now, it will be convenient to reason about degrees in terms of a matrix form.

Definition B.1. Let 0 ≤ e < 2n. Moreover, let e = b020 + b121 + · · · + bn−12n−1 be the binary
representation of e (where b0, b1, . . . , bn−1 ∈ {0, 1}). Then, define the block matrix representation of e to
be the following m× ` matrix: 

bn−` bn−`+1 · · · bn−1
...

...
...

b` b`+1 · · · b2`−1

b0 b1 · · · b`−1

 .

Furthermore, for j = 0, 1, . . . , `− 1, we define the j-shifted row projection of e, denoted projj(e), as

projj(e) =
n−1∑
i=0

bi2
((i+j) mod `).

In other words, projj(e) is obtained by taking the block matrix representation of e, cyclically shifting its
columns by j to the right, and then taking the inner product of (20, 21, . . . , 2n−1) with the row sum of the
resulting matrix.

Note the following easy property about row projections.

Lemma B.2. For any j = 0, 1, . . . , ` − 1, we have that projj(e) ≡ 2je (mod 2` − 1). In particular,
projj(e) ≡ 0 (mod 2` − 1) if and only if e ≡ 0 (mod 2` − 1).
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Proof. As usual, let e = b020 + · · ·+ bn−12n−1 be the binary representation of e. Note that

projj(e) =
n−1∑
i=0

bi2
((i+j) mod `)

≡
n−1∑
i=0

bi2
i+j

≡ 2j
n−1∑
i=0

bi2
i

≡ 2je (mod 2` − 1),

which proves the first part of the claim. The second part of the claim is a simple consequence of
the first part.

Theorem B.3. Suppose e is a degree whose block matrix representation has at least two zeros in some
column. Then, e passes any (n− log d+ 1)-dimensional subspace S of the form (6).

Proof. Recall (7). Suppose e satisfies the hypothesis of the claim. As noted before, it suffices to
show that there is no way to write e as a sum e = e1 + e2 + · · · + em−1 such that (1.) e1, . . . , em−1

have distinct supports in their binary expansion, and (2.) e1, e2, . . . , em−1 are all positive multiples
of 2` − 1.

For the sake of contradiction, assume that there does exist a decomposition e = e1 + e2 + · · ·+
em−1 satisfying (1.) and (2.). Also, suppose the jth column of the block matrix representation of e
contains at least two zeros. Then, by Lemma B.2, we have that for i = 1, 2, . . . ,m− 1,

proj`−j(ei) ≡ 2`−jei ≡ 0 (mod 2` − 1).

Moreover, since ei is positive, we must have that proj`−j(ei) > 0. Thus, proj`−j(ei) ≥ 2` − 1. It
follows that

proj`−j(e) =
m−1∑
i=1

proj`−j(ei) ≥ (m− 1)(2` − 1). (8)

On the other hand, since there are at least two zeros in the jth column of the block matrix repre-
sentation of e, we have

proj`−j(e) ≤ m(20 + 21 + · · ·+ 2`−1)− 2 · 2`−1 = (m− 1)(2` − 1)− 1,

which contradicts (8). Hence, (1.) and (2.) cannot be satisfied, and desired result follows.

Thus, let us define D ⊆ {0, 1, . . . , 2n − 1} by

D = {0 ≤ e ≤ 2n − 1 : the block matrix rep. of e contains at least two zeros in some column}. (9)

It is easy to see that D is shift-closed and shadow-closed. Thus, T (D) ⊆ {F2n → F2}. Moreover,
for none of the degrees in D can the zeros in the n-bit binary representation lie in a cyclic block
of length log d − 1 (this is guaranteed by the condition that there are two zeros in some column
of the block matrix representation). Thus, T (D) ⊆ eBCH(n, (d − 2)/2). Combining this with
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RM(n − log d, n) ⊆ T (D) shows that T (D) has distance d. Moreover, by Theorem B.3, all e ∈ D
simultaneously pass a common subspace S of dimension n − log d + 1, which means that the
distance of the dual code is 2N/d.

Finally, recall from Theorem 2.14 that dim(T (D)) = |Deg(D)|. The degrees that are not in D
are precisely those that have at most one zero in each column of their block matrix representation.
Hence, a simple counting argument shows that

dim(T (D)) = N −
(

1 +
logN

log d− 1

)(log d−1)

.

Remark. The above code T (D) turns out to be the univariate analogue of the multivariate lin-
ear locality LTC presented in [GKS13]. The criterion for the degree set in the multivariate code is
virtually the same “two zeros in some column” criterion here, except that the degrees for the mul-
tivariate code are m-tuples, and each component of the m-tuple corresponds to a row (viewed as
a binary representation) of our block matrix representation. Testability of our univariate analogue
follows from [GKS13], with the use of an isomorphism between F2n and Fm

2`
.

Remark. The linear locality code of [HRZS13] is a code C ⊆ {Fn/t2t → F2} for general t | n. It is a
generalization of the code in [GKS13] (the latter follows by setting t = ` for n that are multiples of
`). The procedure of this section can be applied in a similar fashion to obtain univariate analogues
of the codes of [HRZS13], except that one uses subspaces constructed using the subfield F2t instead
of F2` , and the block matrix representation will have to be defined as an (n/t)× t matrix. We omit
the details, since the technique is similar enough, and the specific construction of [GKS13] is the
one that matches the lower bound on co-dimension given by Theorem 4.9.

B.2 Optimality Results

Now, we show that the technical results of Theorems 4.5 and 4.8 are tight by showing that the
univariate construction of the previous section matches those bounds.

Again, take ` = log d − 1 and n = `m, and let D be as in (9). Moreover, choose S to be a
subspace whose indicator lies in the dual of T (D). Let e∗ = 20 + 21 + · · ·+ 2n−`−1.

Lemma B.4. For any 0 ≤ r ≤ n− `−1, there exists at most one value of u ∈ {n− `, n− `+1, . . . , n−1}
such that e′ = e∗ − 2r + 2u does not pass S.

Proof. Let s = rmod `. Note that for any u ∈ {n− `, . . . , n− 1} such that u 6= n− `+ s, the block
matrix representation of e′ = e∗ − 2r + 2u contains two zeros in some column, and thus, e′ would
pass S. This implies that the only admissible value of u for which e′ = e∗ − 2r + 2u does not pass
S is u = n− `+ s, as desired.

From the proof of Theorem 4.2, we know that e∗ does not pass S. Therefore, the result of
Theorem 4.5 shows that there must exist at least one value of e′ = e− 2r + 2u that does not pass S.
Thus, Lemma B.4 matches this lower bound.

Next, we note the following lemma.

Lemma B.5. For any n− ` ≤ u ≤ n− 1, there exist at most m− 1 = n
log d−1 − 1 values of r < n− ` such

that e′ = e∗ + 2u − 2r does not pass S.
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Proof. Let s = umod `. Then, note that for any r < n − ` such that rmod ` 6= s, the block matrix
representation of e′ = e∗+2u−2r contains two zeros in some column, and hence, e′ would pass S.
Thus, the only possible values of r < n− ` for which e′ = e∗+ 2u− 2r may not pass S are those for
which rmod ` = s. There are precisely m−1 such values of r, which proves the desired claim.

Since the result of Theorem 4.8 shows that there must exist at least n
log d−1 − 1 values of e′ =

e+ 2u − 2r that do not pass S, we see that Lemma B.5 matches this lower bound.

Remark. Straightforward generalizations of the above lemmas (generalized to any e∗ whose block
matrix representation has exactly one zero in each column) actually show that T (D) is maximal
among affine-invariant codes with the desired properties. In particular, any degree set D′ strictly
containing D that is both shift-closed and shadow-closed would have to contain some degree
whose block matrix representation contains exactly one zero in each column, which is impossible.
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