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Abstract

A local tester for a code probabilistically views a small set of coordinates of a given word and based
on this local view accepts codewords with probability one while rejecting words far from the code with
constant probability. A local tester for a code is said to be “robust” if the local views of the tester are far
from acceptable views when the word being tested is far from the code. Robust testability of codes play
a fundamental role in constructions of probabilistically checkable proofs where robustness is a critical
element in composition. In this work we consider a broad class of codes, called lifted codes, that include
codes formed by low-degree polynomials, and show that an almost natural test, extending a low-degree
test proposed by Raz and Safra (STOC 1997), is robust. Our result is clean and general — the robustness
of the test depends only on the distance of the code being lifted, and is positive whenever the distance
is positive.

We use our result to get the first robust low-degree test that works when the degree of the polynomial
being tested is more than half the field size. Our results also show that the high-rate codes of Guo et al.
(ITCS 2013) are robustly locally testable with sublinear query complexity. Guo et al. also show several
other interesting classes of locally testable codes that can be derived from lifting and our result shows
all such codes have robust testers, at the cost of a quadratic blowup in the query complexity of the tester.
Of technical interest is an intriguing relationship between tensor product codes and lifted codes that we
explore and exploit.
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I. INTRODUCTION

In this we work prove that a natural class of “testers” for a broad class of codes called “lifted codes”
are “robust”. We explain these terms below.

Let Fq denote the finite field of cardinality q. In this work we consider codes C ⊆ Fnq that are linear
(i.e., C forms a vector space over Fq). Rather than thinking of words in Fnq as sequences of length n,
we will view them as functions from some fixed set S of cardinality n to the range Fq. (The structure
of the set S and symmetries will play a role later in the paper.) We use {S → Fq} to denote the set
of all such functions. The rate of a code is the ratio dim(C)/n and (relative) distance is the quantity
minf 6=g∈C{δ(f, g)} where δ(f, g) = 1

n · |{x ∈ S|f(x) 6= g(x)}| is the distance between f and g. We say
f is τ -far from C if δ(f, C) , ming∈C{δ(f, g)} ≥ τ .

Given a code C ⊆ {S → Fq} and integer `, an `-local tester T is a distribution D on S` × P(F`q)1

with the semantics as follows: Given oracle access to f : S → Fq, the tester T samples (π, V ) ← D,
where π = (π1, . . . , π`) ∈ S` and V ⊆ F`q, and accepts f if and only if f |π , (f(a1), . . . , f(a`)) ∈ V .
The tester is said to be ε-sound if T accepts f ∈ C with probability one, while rejecting f that is δ-far
from C with probability at least ε · δ.

In this work we are interested in a stronger property of testers known as their robustness, formally
defined by Ben-Sasson and Sudan [BSS06] based on analogous notions in complexity theory due to
Ben-Sasson et al. [BSGH+04] and Dinur and Reingold [DR04]. The hope with a robust tester is that,
while it may make a few more queries than the minimum possible, the rejection is “more emphatic”

1For a finite set U , P(U) denotes the set of all subsets of U .



in that functions that are far from C typically yield far from acceptable views, i.e., if δ(f, C) is large
then so is δ(f |π, V ) for typical choices of (π, V ) ← D. Formally, we say that a tester T is α-robust
if E(π,V )←D[δ(f |π, V )] ≥ α · δ(f, C). In this work we will be interested in tests for infinite families of
codes {Cn ⊆ Fnq }n with sublinear locality, i.e., `(n) = o(n), and constant robustness α(n) ≥ α > 0.

From the definitions, and the fact that δ(f |π, V ) ≤ 1 for every (π, V ), it follows that an α-robust tester
is also α-sound. On the other hand an α-sound `-local tester is at least (α/`)-robust. But robustness can
be a much stronger property than mere soundness since it allows for composition with other local testers.
In particular, if there is an α-robust tester for f with distribution D and if for every (π, V ) in the support
of D, the property of being in V has an `′-local tester that is ε-sound, then C has an `′-local tester that
is α · ε-sound. The hope that membership in V has a nice local test for every V in the support of D may
seem overly optimistic, but for many symmetric codes (as the ones considered in this work) all the V ’s
are isomorphic — so the many different “hopes” combine to a single one. We illustrate the concept of
robustness in the context of low-degree testing and describe the role it has played in applications.

A. Low-degree testing

One of the classical problems for which testers have been explored extensively and many applications
found is the task of low-degree testing. This task corresponds to the case where C = Cm,d,q has as its
domain S = Fmq and C consists of all m-variate functions that are polynomials of degree at most d. Low-
degree testing was studied first in the work of Rubinfeld and Sudan [RS96] and many variations have
been analyzed in many subsequent works — a partial list includes [ALM+98], [FS95], [AS03], [RS97],
[MR06], [AKK+05], [KR06], [JPRZ09], [BKS+10], [HSS11]. When d� q low-degree tests making as
few as d+ 2 queries are known, that have 1/ poly(d)-soundness (see, for instance, Friedl-Sudan [FS95]).
However, tests that make O(d) queries achieve constant soundness (a universal constant independent of
m, d, q provided q is sufficiently larger than d), and even constant robustness. This constant robustness
is central to the PCP construction of Arora et al.[ALM+98]. In all cases with d � q, low-degree tests
operate by considering the restriction of a function to a random line, or “plane” (namely a 2-dimensional
affine subspace), in the domain, and accepting a function if it is a polynomial of degree at most d on
the restricted subspaces. Thus, the different restrictions π are different affine subspaces of low-dimension
(one or two) and the acceptable pattern V is the same for all π. In particular the robust analysis of the
low-degree test allows for low-query tests, or even proofs, of membership in V in constant dimensional
spaces to be composed with the low-degree test in high-dimensions to yield low-query PCPs. Robustness
turns out to be much more significant as a parameter to analyze in these results than the query complexity
of the outer test. Indeed subsequent strengthenings of the PCP theorem in various senses (e.g., in [AS03],
[RS97], [MR06] rely on improving the robustness to a quantity close to 1, and this leads to PCPs of
arbitrarily small constant, and then even o(1), error.

B. Lifted Codes and Testing

In this work we consider robust testing of “lifted codes”. A family of lifted codes is specified by a
base code C ⊆ {Ftq → Fq}. The family is indexed by positive integer m ≥ t and the m-dimensional
lifted code Ct↗m consists of all functions f : Fmq → Fq such that for every t-dimensional affine subspace
A in Fmq , the restriction of f to A, denoted f |A, is contained in C. (For the definition to be natural it is
best if C is affine-invariant, i.e., f ∈ C ⇔ f ◦ T ∈ C for every affine bijection T : Fmq → Fmq .)

Lifted codes were first defined by Ben-Sasson et al. [BSMSS11] and subsequently explored system-
atically by Guo et al. [GKS13]. Lifted codes naturally generalize the notion of low-degree polynomials.
Indeed the characterization that for d < q/2 the family of degree d m-variate polynomials is the lift of
univariate degree polynomials, is the basis of the low-degree test in [RS96], [FS95]; and extensions to
settings where d > q/2 in [KR06] forms the basis of their low-degree test. But lifted codes give other
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families of codes as well. They form a natural subclass of “affine-invariant” codes that have been studied
in the context of local testing by Kaufman and Sudan [KS08] and many subsequent works (e.g., [GKS08],
[GKS09], [KL10], [BGM+11]): A code C ⊆ {Fmqt → Fq} is affine-invariant if for every affine bijection
(permutation) A : Fmqt → Fmqt we have f ∈ C ⇔ f ◦ A ∈ C. They satisfy a property termed the “single-
orbit” property in [KS08] that makes them locally testable, and indeed with some fairly strong analysis
as shown by Haramaty et al. [HRS13]. In particular, they give codes of rate arbitrarily close to 1 and
positive distance that have nα-local testers on codes of length n for arbitrarily small α [GKS13]. Lifted
codes have essentially the same distance as base code, and they are locally correctible as well, making
them general and sometimes powerful extensions of low-degree polynomials.

Lifted codes have a natural test - to test Ct↗m, pick a random t-dimensional subspace A in Fmq and
verify that f |A ∈ C. Such a test is known to be q−2t-sound [KS08] and even εq-sound (independent
of t) [HRS13]. These analyses however are not robust, or more accurately, the soundness as well as
robustness of these tests degrades with q. In this work we analyze a slightly less natural test and show
that it has good robustness if the underlying code has good distance, with the robustness depending only
on the distance.

C. Our results

In this work we propose and analyze the following test for Ct↗m: Pick a random 2t-dimensional
subspace A in Fmq and accept if f |A ∈ Ct↗2t. Our main theorem relates the robustness of this test to the
distance of the code C.

Theorem I.1. ∀δ > 0 ∃α > 0 such that the following holds: For every finite field Fq, for every pair of
positive integers t and m and for every affine-invariant code C ⊆ {Ftq → Fq} satisfying δ(C) ≥ δ, the
code Ct↗m has a q2t-local test that is α-robust.

The special case of Theorem I.1 for t = 1 is proved in Section V. The general case is proved in
the full version of this paper [GHS15]. As we elaborate below, Theorem I.1 immediately implies a
robust analysis for low-degree tests. Whereas almost all previous robust analyses of low-degree tests had
more complex conditions on the relationship betwen the robustness, the degree, and the field size - our
relationship is extremely clean. The dependence α on δ that we prove is polynomial but of fairly high
degree α = Ω(δ74). We do not attempt to improve this relationship in this paper and choose instead to
keep the intermediate statements simple and general. We note that a significant portion of this complexity
arises due to our desire to lift t-dimensional codes for general t, and here the fact that the robustness
lower-bound is independent of t is itself significant.

Comparing with other testing results for lifted codes, there are only two prior works to compare with:
Kaufman and Sudan [KS08] analyze a tester for a broader family of codes that they call “single-orbit”
codes. Their result would yield a robustness of Θ(q−3t). (See Corollary II.8.) Haramaty et al. [HRS13]
also give a tester for lifted codes. They don’t state their results in terms of robustness but their techniques
would turn into a robustness of εq · δ, where the εq is a positive constant for constant q but goes to zero
extremely quickly as q → ∞. Thus for growing q (and even slowly shrinking δ) our results are much
stronger.

Turning to consequences of our main theorem, a direct corollary obtained by applying Theorem I.1 to
codes developed by Guo et al. [GKS13] are codes of rate close to 1 that have nε-local Ω(1)-robust local
testers.

Corollary I.2. ∀ε, β > 0, ∃α > 0 such that for infinitely many n there exists q = q(n) = O(nε) and a
linear code C ⊆ Fnq of rate 1− β that has an α-robust nε-local tester.
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The only other prior construction of codes that achieve such properties were the tensor product codes
of Viderman [Vid12].

Even applied to the classical task of low-degree testing our results are new. An almost direct corollary
of our main theorem is a q4-local robust low-degree test for the setting d ≤ (1 − δ)q. To see why we
get q4 queries, note that when d > q/2 then the set of m-variate degree d polynomials are not equal
to the m-dimensional lift of the set of degree d univariate polynomials. But they do turn out to be the
m-dimensional lifts of the set of degree d bivariate polynomials. Applying our testing result to this lifted
family yields a robust test making q4 queries. But with some slight extra work we can get a better tester
that makes only q2 queries and this yields the following theorem.

Theorem I.3. ∀δ > 0 ∃α > 0 such that the following holds: For every finite field Fq, for every integer
d ≤ (1− δ)q and every positive integer m, there is a q2-query α-robust low-degree test for the class of
m-variate polynomials of degree at most d over Fq.

We note that previous works on low-degree testing worked only when d < q/2. This ratio seems to
be achieved by Friedl and Sudan (see [FS95, Theorem 13]). Other works [RS96], [ALM+98], [RS97],
[AS03], [MR06] seem to achieve weaker ratios for a variety of reasons that we discuss below.

D. Proof approach and some technical contributions

In order to describe our test and analysis techniques, we briefly review the two main tests proposed
in the literature for “low-degree testing”, when the field size is much larger than the degree. The most
natural test for this task is the one that picks a random line in Fmq and computes the proximity of the
function restricted to this line to the space of univariate degree d polynomials. This is the test proposed
by Rubinfeld and Sudan [RS96] and analyzed in [RS96], [ALM+98], [AS03]. A second low-degree test
is somewhat less efficient in its query complexity (quadratically so) but turns out to have a much simpler
analysis — this test would pick a random two-dimensional (affine) subspace in Fmq and verify that the
function is a bivariate polynomial of degree at most d on this subspace. This is the test proposed by
Raz and Safra [RS97] and analyzed in [RS97], [MR06]. Both tests can be analyzed by first reducing
the testing problem to that of testing constant variate functions (at most four variate functions) and then
analyzing the constant dimensional problem as a second step.

The first step is completely generic or at least it was sensed to be so. However there was no prior
formalization of the fact that it is generic. The only class of functions to which it has been applied are
the class of low-degree polynomials and a priori it is not clear how to even justify the claim of genericity.
Here we show that the first step applies to all lifted codes and thus giving the first justification of the
presumed genericity of this step, which we consider to be a conceptual contribution.

For the second step, the robust analyses in [ALM+98], [AS03] are quite algebraic and there seems to
be no hope to use them on general lifted codes. The test and analysis of Raz and Safra [RS97] on the
other hand feels much more generic. In this work we use their test, and extend it to general lifted codes
and show that it is robust. Even the extension of the test is not completely obvious. In particular, to test
low-degree polynomials they look at restrictions of the given function to 2-dimensional “planes”. When
lifting t-dimensional properties, it is not immediate what would be the dimension of the restrictions the
test should look at: Should it be t+ 1? or 2t or maybe 3t− 1 (each of which does make logical sense)?
We show that the 2t dimensional tests are robust, with robustness being independent of t.

Next we turn to our analysis. In showing robustness of their test, applied to generic lifted codes there
is a major barrier: Almost all analyses of low-degree tests, for polynomials of degree at most d, attempt
to show first that a function passing the test with high probability is close to a polynomial of degree twice
the degree, i.e., at most 2d, with some additional features. They then use the distance of the space of
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polynomials of degree 2d and the additional features to establish that the function being tested is really
close to a degree d polynomial. In extending such analyses to our setting we face two obstacles: In the
completely generic setting, there is no nice notion corresponding to the set of degree 2d polynomials. One
approach might be to consider the linear space spanned by products of functions in our basic space and
work with them, but the algebra gets hairy to understand and analyze. Even if we abandon the complete
genericity and stick to the space of polynomials of degree d, but now allow d > q/2 we hit a second
obstacle: The space of polynomials of degree 2d have negligible relative distance compared to the space
of polynomials of degree d.

Thus we need to search for a new proof technique and we find one by unearthing a new connection
between “lifted codes” and “tensor product” codes. The tensor product is a natural operation in linear
algebra and when applied to two linear codes, it produces a new linear code in a natural way. Tensor
products of codes are well-studied in the literature on coding theory. The testing of tensor product codes
was initiated by Ben-Sasson and Sudan [BSS06] and subsequently has been well-studied [DSW06],
[Val05], [BSV09b], [BSV09a], [GGR09]. Specifically, a recent result of Viderman [Vid12] gives a
powerful analysis which we are able to reproduce in a slightly different setting to get our results. In
particular this is the ingredient that allows us to work with base codes whose distance is less than 1/2.
Also, for the sake of the exposition we pretend that this test can test two-dimensional tensor products
of one dimensional codes, with one-dimensional tests. (Actually, the test works with three dimensional
tensors and tests them by looking at two-dimensional planes, but by suppressing this difference, our
exposition becomes a little simpler.)

To explain the connection between lifted codes and tensor product codes, and the idea that we introduce
to test the former, we turn to the simple case of testing a bivariate lift of a univariate Reed-Solomon
code. Specifically, let C be the family of univariate polynomials of degree at most d mapping Fq to Fq.
Let C2 be the family of bivariate polynomials that become a univariate polynomial of degree at most d
on every restriction to a line. The tensor product of the C with itself, which we denote C⊗2 corresponds
to the set of bivariate polynomials of degree at most d in each variable. Clearly C2 ⊆ C⊗2 but such
subset relationships are not of immediate use in testing a code. (Indeed locally testable codes contain
many non-LTCs.) To get a tighter relationship, now fix two “directions”2 d1 and d2 and let Cd1,d2 be
the code containing all bivariate polynomials over Fq that on every restriction to lines in directions d1
and d2 form univariate degree d polynomials. On the one hand the code Cd1,d2 is just isomorphic to the
tensor product code C⊗2 which is testable by the natural test, by our assumption. On the other hand, we
now have C2 = ∩d1,d2Cd1,d2 so we now have a characterization of the lifted codes in terms of the tensor
product. One might hope that one could use this characterization to get a (robust) analysis of the lifted
test since it tests membership in Cd1,d2 for random choices of d1 and d2, but unfortunately we do not see
a simple way to implement this hope.

Our key idea is look instead at a more complex family of codes Cd1,d2,d3 that consists of functions of
degree d in directions d1, d2 and d3. (Of course now d1, d2, d3 are linearly dependent and so Cd1,d2,d3
is not a tensor product code. We will return to this issue later.) We still have C2 = ∩d1,d2,d3Cd1,d2,d3 .
Indeed we can even fix d1, d2 arbitrarily (only requiring them to be linearly independent) and we have
C2 = ∩d3Cd1,d2,d3 . This view turns out to be more advantageous since we now have that for any d3 and
d′3 we have Cd1,d2,d3 ∪ Cd1,d2,d′3 ⊆ Cd1,d2 which is a code of decent distance. This allows us to show that
if the function being tested is close to Cd1,d2,d3 for many choices of d3 then the nearest codewords for all
these choices of d3 are the same. An algebraic analysis of lifted codes tells us that a codeword of Cd1,d2
can not be in Cd1,d2,d3 for many choices of d3 without being a codeword of the lifted code and this lends

2Informally a direction refers to the slope of the line. This may be formalized by considering all non-zero pairs (a, b) ∈ F2
q

under the equivalence (a, b) ∼ (c, d) if ad = bc.
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promise to our idea. But we are not done, since we still need to test the given function for proximity
to Cd1,d2,d3 and this is no longer a tensor product code so Viderman’s result does not apply directly.
Fortunately, we are able to develop the ideas from Viderman’s analysis for tensor product codes [Vid12]
and apply them also to our case and this yields our test and analysis. We note that this extension is not
immediate — indeed one of the central properties of tensor product codes is that they are decodable
from some clean erasure patterns and this feature is missing in our codes. Nevertheless the analysis can
be modified to apply to our codes and this suffices to complete the analysis.

In the actual implementation, as noted earlier, we can’t work with univariate tests even for the simple
case above, and work instead by using a bivariate test for trivariate and 4-variate functions. (This is
similar to the reasons why Raz and Safra used a bivariate test.) This complicates the notations a bit, but
the idea remains similar to the description above. Our task gets more complicated when the base code
being lifted is t-dimensional for t > 1. The most natural adaptation of our analysis leads to dependencies
involving δ (the distance of the base code) and t. We work somewhat harder in this case to eliminate
any dependence on t while working within the framework described above.

Organization: We describe some preliminary background in Section II. The rest of the paper is
devoted to the proof of Theorem I.1 for the special case of t = 1. In Section III we analyze the
robustness m − 1-dimensional tests of m-dimensional lifts. This analysis reduces to the analysis of a
special class of “tensor-like” codes which we perform in Section IV. In Section V we show how to use
the analysis from Section III, in particular for the cases m = 3 and m = 4, to get a robust analysis of
2-dimensional tests of arbitrarily high-dimensional lifts. In the full version of this paper [GHS15] we
show how to convert the analysis of lifted-code testers to get a robust low-degree test.

II. PRELIMINARIES

We present some basic background and definitions related to lifted codes and their testing. We describe
some previous testers that offer weak robustness (that depends on q and t). We then introduce the notion
of tensor product codes which will play a central role in our proofs. Finally, we describe some of the
basic geometry of affine subspaces in Fmq .

We include some very basic terminology here. The full version [GHS15] of this paper contains more
detailed background.

A. Affine-invariance and degree sets

Definition II.1. A code C ⊆ {Fmq → Fq} is affine-invariant if f ∈ C if and only if f ◦ A ∈ C for every
affine bijection A : Fmq → Fmq .

Definition II.2. For prime p and integers a =
∑

i≥0 a
(i)pi and b =

∑
i≥0 b

(i)pi with 0 ≤ a(i), b(i) ≤ p−1

for each i ≥ 0, a is in the p-shadow of b, denoted by a ≤p b, if a(i) ≤ b(i) for all i ≥ 0.

Definition II.3. A code C ⊆ {Fmq → Fq} has a degree set if there is a set D ⊆ {0, 1, . . . , q − 1}m such
that C = {f : Fmq → Fq | supp(f) ⊆ D}, where supp(f) is the set of all exponents of monomials in
the support of the unique polynomial representing f . Denote Deg(C) , D. The degree set Deg(C) is
p-shadow-closed if, whenever d ∈ Deg(C) and e ≤p d, then e ∈ Deg(C).

We now state a basic proposition about the degree sets of affine-invariant codes. This proposition follows
immediately from Lemmas 4.2 and 4.3 in [KS08]. Specifically, Lemma 4.2 establishes the existence of
a degree set and Lemma 4.3 implies that it is p-shadow closed.

Proposition II.4 ([KS08]). Every linear affine-invariant code over Fq of characteristic p has a p-shadow-
closed degree set.

6



B. Lifting

Whenever f : Fmq → Fq and A ⊆ Fmq is a k-dimensional affine subspace, we think of A as being
parameterized by some affine function A : Fkq → Fmq (abusing notation) and by the restriction f |A of f
to A, we mean the k-variate function f ◦ A. This definition depends on the parameterization of A, but
if C is affine-invariant, then whether f |A ∈ C does not depend on this parameterization. We define lines
and planes to be 1-dimensional and 2-dimensional affine subspaces respectively.

Definition II.5. Let m ∈ N and let C ⊆ {Fq → Fq} be affine-invariant. Then the m-dimensional lift C↑m
of C is the code

C↑m ,
{
f : Fmq → Fq

∣∣ f |l ∈ C for any line l
}

C. Testing and robustness

We now define the robustness of a lifted code, specializing the definition to robustness with respect to
subspace testers.

Definition II.6. Let k ≤ m. The code C↑m is (α, k)-robust if, for every r : Fmq → Fq,

EA
[
δ
(
r|A, C↑k

)]
≥ α · δ

(
r, C↑m

)
where the expectation is over uniformly random k-dimensional affine subspaces A ⊆ Fmq . When k is
clear from context, we say the code is α-robust.

In this terminology we wish to show that C↑m is (α, 2)-robust for some α depending only on δ(C).
Observe that if A is a random k1-dimensional subspace and B is a random k2-dimensional subspace,

where k2 ≥ k1, then

EA
[
δ
(
r|A, C↑k1

)]
= EB

[
EA⊆B

[
δ
(
r|A, C↑k1

)]]
≤ EB

[
δ
(
r|B, C↑k2

)]
so if C↑m is (α, k1)-robust, then it is also (α, k2)-robust.

The following theorem follows from Kaufman and Sudan [KS08, Theorem 2.9].

Theorem II.7. If C ⊆ {Ftq → Fq} is linear affine-invariant, then C↑m has a line test which rejects with
probability δ(r,C↑n)

(2q+1)(q−1) .

As a corollary to Theorem II.7, the k-dimensional test for C↑m is O(q−3)-robust.

Corollary II.8. If C ⊆ {Fq → Fq} is linear affine-invariant, then C↑m is ( q
−3

2 , k)-robust for k ≥ 1.

Proof. It suffices to show that C↑m is ( q
−3

2 , 1)-robust. Let r : Fmq → Fq and l be a random line. Then

El [δ (r|lC)] = El [δ (r|l, C) | r|l /∈ C] · Pr
l

[r|l /∈ C]

≥ q−1 · Pr
u

[r|l /∈ C]

(Theorem II.7) ≥ q−1 ·
δ
(
r, C↑m

)
(2q + 1)(q − 1)

≥ q−3

2
· δ
(
r, C↑m

)
.

We will also use the fact that we can compose robustness.
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Proposition II.9 (Robustness composes multiplicatively). Let k1 ≤ k2 ≤ m and let C ⊆ {Fq → Fq}
be linear affine-invariant. If C↑m is (α2, k2)-robust and C↑k2 is (α1, k1)-robust, then C↑m is (α1 ·α2, k1)-
robust.

D. Tensor codes

Tensor product codes play an important role in our proof. There are many equivalent ways to define
the tensor product of two codes. Since in this work we think of codes as linear subspaces of functions
in {Fmq → Fq}, we define the tensor product in this context.

Definition II.10. Let m ≥ 2 and for each i ∈ [m], let the code Ci ⊆ {Fq → Fq} be linear and let
Vi,a ⊆ Fmq be the one dimensional subspace consisting of all points where the i-th coordinate is free and
all the [m]\{i} coordinates are fixed to a ∈ F[m]\{i}

q . The tensor product code C1⊗· · ·⊗Cm ⊆ {Fmq → Fq}
is the code

C1 ⊗ · · · ⊗ Cm ,
{
f : Fmq → Fq

∣∣∣ f |Vi,a ∈ Ci for every i ∈ [m] and a ∈ F[m]\{i}
q

}
Define C⊗m ,

m︷ ︸︸ ︷
C ⊗ · · · ⊗ C.

The following characterization of tensor product codes will be helpful.

Proposition II.11. Let m ≥ 2 and for each i ∈ [m] let the code Ci ⊆ {Fq → Fq} be linear. Then

C1 ⊗ · · · ⊗ Cn = spanFq

{
n∏
i=1

fi(Xi)

∣∣∣∣∣ fi ∈ Ci
}

Corollary II.12. If C ⊆ {Fq → Fq} has a degree set Deg(C), and m ≥ 1, then C⊗m has degree set
Deg(C⊗m) = Deg(C)m. In particular, if C is linear affine-invariant, and Fq has characteristic p, then
C⊗m has a p-shadow-closed degree set.

Proposition II.13. Let C1, ..., Cm be codes with distance δ1, ..., δm respectively. Then δ(C1 ⊗ · · · ⊗ Cm)
is at least

∏m
i=1 δi. In particular, δ (C⊗m) ≥ δ(C)m.

The following is a statement about the erasure decoding properties of tensor product codes.

Proposition II.14. [BSS06, Proposition 3.1] Let C = C1 ⊗ · · · ⊗ Cm ∈
{
Fmq → Fq

}
and S ⊆ Fmq be a

subset such that for every i ∈ [m] and a ∈ F [m]\{i}
q satisfy |S ∩ Vi,a| ≥ (1− δ(Ci))q. Let r : S → Fq be

such that for every i ∈ [m] and a ∈ F[m]\{i}
q satisfy that r|S∩Vi,a can be extended into a codeword of Ci

on Vi,a. Then there exists a unique r′ ∈ C such that r′|S = r.

E. Geometry over finite fields

For two sets A,B ⊆ Fmq , define the Minkowski sum

A+B , {a + b | a ∈ A,b ∈ B}

and define

span(A) ,

{∑
a∈A

ca · a

∣∣∣∣∣ ca ∈ Fq

}
.

For x ∈ Fmq and A ⊆ Fmq , define the subspace through x in directions A to be

(x, A) , {x}+ span(A).
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Lemma II.15. Let k < m. Let l ⊆ Fmq be a fixed line, and let v ⊆ Fmq be a uniformly random affine
subspace of dimension k. Then Prv [u ∩ v 6= ∅] < q−(m−k−1).

Proof. By affine symmetry, we may assume that v is fixed and l is random. Furthermore, we can assume
that v =

{
y ∈ Fmq | y1 = · · · = ym−k = 0

}
. We choose l by choosing random x ∈ Fmq , a ∈ Fmq \ {0}

and define l(t) = x + ta. If a ∈ v, then l intersect v only if x ∈ v, which happens with probability
q−(m−k). Else, there is a coordinate i ∈ [m− k] such that ai 6= 0. In this case for t = − bi

ai
we have that

l intersect v only if for all j ∈ [m− k] \ {i} we have that bj + taj = 0, which happens with probability
q−(m−k−1).

Lemma II.16. Let k < m and a1, . . . ,ak ∈ Fmq be uniformly chosen vectors. Then the probability
that {ai}ki=1 are linearly independent is at least 1 − q−(m−k). In particular, the probability that two
t-dimensional subspaces through a point x ∈ Fmq will intersect only on x is at least 1− q−(m−2t).

Proof. The probability that ai+1 /∈ span {a1, . . . ,ai} given that the latter are linearly independent is
1− q−(m−i). Therefore the probability that all of them are independent is

k−1∏
i=0

(1− q−(m−i)) ≥ 1−
k−1∑
i=0

q−(m−i) = 1− q−(m−k)
k∑
i=1

q−i ≥ 1− q−(m−k) .

For the last part, observe that choosing two t-dimensional subspaces through x is equivalent to choose
2t basis vectors, given that each t are linearly independent. So the probability that they intersect only on
x, is the same as that those vectors are linearly independent. Hence, by the first part, this probability is
at least 1− q−(m−2t).

III. ROBUSTNESS FOR SMALL DIMENSION

In this section, we show that when m ≥ 3, C↑m is (α,m− 1)-robust for α = δ2m

4(m+1

m−1)
2 .

Overview: We observe that picking a random hyperplane can be done by picking m random linearly
independent directions, picking an additional random direction a that is not spanned by any m − 1 of
former, and picking a hyperplane spanned by m − 1 of these m + 1 random directions (call such a
hyperplane “special”). Now, viewing the first m chosen directions as the standard basis directions, we
see that the average distance to the code, when restricted to special hyperplanes, is still small. We then
show that, through the main technical lemma (Theorem III.5), that this implies the codeword is close to a
special subcode Ca of the standard tensor code C⊗m, where in addition we insist that restrictions to lines
in direction a are codewords of C. Therefore, for “most” random directions a, our function r is close
to some codeword ca ∈ Ca. Since these ca are also codewords of C⊗m and they are all close to r and
therefore to each other, they are actually the same codeword of C⊗m. In fact, because this codeword is
in Ca, we show by Proposition III.1 that it must actually be a codeword of the lift C↑m. The proof of the
main lemma, Theorem III.5, follows a strategy similar to that of Viderman. Throughout, we deal with the
distance δ(C⊗m) = δ(C)m of the tensor code C⊗m, which degrades with m, which is why the robustness
we achieve in this section degrades with m as well. In Section V, we avoid dealing with tensor codes,
and use the result in this section for m = 3 to boost our way up to general m.

Proposition III.1. If f ∈ C⊗m \ C↑m, then there is a point such that for at least δm fraction of lines
through the point, the restriction of f to the line is not a codeword of C. More precisely, there exists
b ∈ Fmq such that for at least δm ·qm directions a ∈ Fmq , the univariate polynomial ga,b(T ) := f(aT+b)
is not a codeword of C.
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Proof. Let D = Deg(C). Write f(X) =
∑

d∈Dm fd ·Xd. Then

ga,b(T ) := f(aT + b) (1)

=
∑

d∈Dm

fd · (aT + b)d (2)

=
∑

d∈Dm

fd ·
∑
e≤pd

(
d

e

)
aebd−eT e (3)

=
∑

e∈{0,...,q−1}m
T ‖e‖1 ·

∑
d∈Dm

e≤pd

fd

(
d

e

)
aebd−e (4)

=

q−1∑
d=0

T d ·
∑
e

‖e‖1 mod∗ q=d
d∈Dm

e≤pd

fd

(
d

e

)
aebd−e (5)

=:

q−1∑
d=0

fd,b(a) · T d. (6)

Since C is linear affine-invariant, D is p-shadow closed, so e ∈ Dm if d ∈ Dm and e ≤p d. Therefore,
each fd,b ∈ C⊗m. By assumption, f /∈ C↑m, so there exist a,b ∈ Fmq such that ga,b /∈ C, so there must
be some d /∈ D such that fd,b 6= 0. Since δ(C⊗m) = δm, for at least δm fraction of a ∈ Fmq we have
fd,b(a) 6= 0 and hence ga,b /∈ C.

The following is the main technical theorem that will be prove in Section IV.

Definition III.2. For a set D ⊆ Fmq of size |D| ≥ m−1, define V k
D to be the collection of k-dimensional

affine subspaces in Fmq spanned by elements in D, i.e. affine subspaces parametrized by a0 + a1T1 +
· · · + akTk for a0 ∈ Fmq , a1, . . . ,ak ∈ D, and T1, . . . , Tk take values in Fq. For convenience, define
HD := V m−1

D and define LD := V 1
D.

Definition III.3. Define CmD to be the code of all words f : Fmq → Fq such that f |l ∈ C for every line
l ∈ LD.

Remark III.4. Observe that C↑m is a subcode of CmD for every D. Indeed C↑m = ∩D⊆Fmq C
m
D = ∩a∈Fmq C

m
{a}.

Furthermore, if D contains the standard basis vectors, then CmD is a subcode of C⊗m.

Our main technical contribution, captured by the following theorem, shows that CmD is robustly testable
with robustness going to zero as |D| grows.

Theorem III.5. Let D ⊆ Fmq be a set of size |D| ≥ m such that every m elements of D are linearly
independent and let r : Fmq → Fq be a word with ρ := Eh∈HD [δ(r|h, C⊗m−1)]. If ρ < δm

4( |D|m−1)
2 , then

δ(r, CmD ) ≤ ρ
( |D|
m−1

)
.

Before we prove Theorem III.5, we show how it (almost immediately) implies the robustness of the
m− 1-dimensional test of the m-dimensional lifted code, where the robustness again decays with m.

Theorem III.6. Let m ≥ 3. Then the m-dimensional lift code C↑m is
(

min

{
δ2m

8(m+1

m−1)
2 , δ3m

16m3

}
,m− 1

)
-

robust.
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Proof. We will assume that q < 2mδ−m, since if q > 2mδ−m then by Corollary II.8 we are done. Let
r : Fmq → Fq to be some receiving word and let ρ := Eh

[
δ(r|h, C↑m−1)

]
. We assume that ρ < δ2m

8(m+1

m−1)
2

(otherwise the result follows trivially).

ρ = Ea1,...,amEaEh∈H{a1,...,am,a} [δ(r|h, C
↑m−1)]

where a1, . . . ,am are random linearly independent directions in Fmq and a is linearly independent of any
m− 1 of them. Fix a1, . . . ,am such that

EaEh∈H{a1,...,am,a} [δ(r|h, C
↑m−1)] ≤ ρ.

By affine-invariance, assume without loss of generality that a1, . . . ,am are the standard basis vectors. Note
that the last direction a is chosen uniformly at random from (F∗q)m, the set of vectors with each coordinate
nonzero. For a ∈ (F∗q)m, define Ha := H{a1,...,am,a} and Ca := Cm{a1,...,am,a}. Since C↑m−1 ⊆ C⊗m−1,

EaEh∈Ha
[δ(r|h, C⊗m−1)] ≤ ρ.

By Markov’s inequality,

Pr
a

[
Eh∈Ha

[δ(r|h, C⊗m−1)] ≥
ρ

1
2δ
m

]
<

1

2
δm.

In other words, there is a set A ⊆ (F∗q)m of size |A| ≥ (1− 1
2δ
m)·(q−1)m > (1− 1

2δ
m−m

q )·qm such that,
for each a ∈ A, there is a codeword ca ∈ Ca such that ρa := Eh∈Ha

[δ(r|h, C↑m−1)] < 2ρ
δm < δm

4(m+1

m−1)
2 . By

Theorem III.5, it follows that for each a ∈ A there is some codeword ca ∈ Ca with δ(r, ca) ≤ ρa
(
m+1
m−1

)
<

δm

2 .
We proceed by showing that all of these codewords are the same codeword c, and moreover c ∈ C↑m,

which implies δ(r, C↑m) ≤ δ(r, c) ≤ ρδ−m
(
m+1
m−1

)
, as desired. Since a1, . . . ,am are the standard basis

vectors, each Ca is a subcode of C⊗m. Thus, for any two a, a′ ∈ A, the codewords ca, ca′ ∈ C⊗m
and satisfy δ(ca, ca′) ≤ δ(ca, r) + δ(r, ca′) < δm = δ(C⊗m), and therefore ca = ca′ , i.e. all of these
codewords are the same codeword c ∈ C⊗m. Moreover, for each a ∈ A, the codeword c restricted to
any line in direction a is a codeword of C, by definition of Ca. It follows from Proposition III.1 and the
assumption that q > 1

2δ
m that c ∈ C↑m.

Corollary III.7. The 4-dimensional lifted code C↑4 is
(

δ21

2·107 , 2
)

-robust.

Proof. By Theorem III.6, C↑4 is
(
δ12

1024 , 3t
)

-robust and C↑3 is
(
δ9

432 , 2
)

-robust. Therefore, by composing,

the 2-dimensional robustness of C↑4 is at least δ12

1024 ·
δ9

432 = δ21

15,786,368

IV. ROBUSTNESS OF SPECIAL TENSOR CODE

In this section, we prove the main technical result (Theorem III.5) used in Section III.
Overview of the proof of Theorem theorem:special tensor main.: The analysis of Viderman [Vid12]

forms the starting point of ours. We define a function c : Fmq → Fq, which we show is both close to
r and a codeword of CnD. Following Viderman’s analysis, we partition Fmq into “good”, “fixable”, and
“bad” points. Each hyperplane v ∈ TD has an associated codeword cv ∈ C⊗(m−1), the nearest codeword
to r|v, and an opinion cv(x) about x. “Good” points are points for which any hyperplane agrees with r.
“Fixable” points are points for which hyperplanes agree with each other, but not with r. “Bad” points are
points for which at least two hyperplanes disagree with each other. For good or fixable x, we naturally
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define c(x) to be the common opinion cv(x) of any hyperplane v through x. Claim IV.2 implies that
there are not many bad points, which immediately shows that c is close to r.

So far, our proof has been a straightforward adaptation of Viderman’s. However, at this point, we are
forced to depart from Viderman’s proof. A hyperplane is “bad” if it has more than 1

2δ
m−1 fraction bad

points. Claim IV.1 shows that every bad point is in a bad hyperplane, and Claim IV.3 shows that there
are less than 1

2δq bad hyperplanes. In [Vid12], which analyses C⊗m and axis-parallel hyperplanes instead
of CnD and TD, this is already enough, since this implies that in each axis-parallel direction, there are
less than δq bad hyperplanes, so the remaining points are all good or fixable and with a little bit more
work, one can show that c can be extended uniquely to a tensor codeword using the erasure-decoding
properties of tensor codes. Unfortunately, we do not have this structure and so we have to work some
more.

We say a line is “good” if it is contained in some good hyperplane, otherwise it is bad. We must
further partition the bad points into merely bad and “super-bad” points, which are points such that either
every hyperplane is bad, or there are two disagreeing good hyperplanes. For merely bad x, we define
c(x) to be the common opinion cv(x) of any good hyperplane v through x. For super-bad x, we pick any
line u through x, take the restriction of c to the non-super-bad points on u, and extend it to a codeword
cu ∈ C, and define c(x) , cu(x). Two non-trivial steps remain: showing that c(x) is well-defined for
super-bad x, and showing that c ∈ CnD.

Claim IV.4 shows that, for any special plane, there are less than 1
2δq lines in each direction that are

bad (not contained in any good hyperplane) or contain a super-bad point. This is proved by exhibiting,
for each such undesirable line, a bad hyperplane in a fixed direction containing the line. If there were too
many undesirable lines, this would result in too many parallel bad hyperplanes, contradicting Claim IV.3.
Finally Claim IV.5 shows if u is a line with no super-bad points, then c|u ∈ C is a codeword.

Now, we show that c is well-defined on super-bad x. Let u1, u2 be two lines through x. Let P be the
plane through x containing u1, u2. On this plane, by Claim IV.4, in each direction we have enough lines
u with no super-bad points, for which c|u ∈ C (by Claim IV.5), so that we can uniquely extend c onto
the entire plane (by Proposition II.14). This gives a well-defined value for c(x).

Finally, we show that c ∈ CnD. Let u be any line. If u has no super-bad points, then c|u ∈ C follows
from Claim IV.5. If c does have a super-bad point x, then c|u ∈ C by the way we defined c(x). This
completes our analysis.

Proof of Theorem III.5. For each hyperplane h ∈ Fmq , define ch ∈ C⊗m−1 to be the closest codeword to
r|h (break ties arbitrarily). We will partition Fmq into three disjoint sets G,F,B (good, fixable, and bad
points, respectively) as follows:

G :=
{
x ∈ Fmq | ch(x) = r(x) for every h ∈ HD

}
F :=

{
x ∈ Fmq | ch(x) = ch′(x) 6= r(x) for every h, h′ ∈ HD

}
B :=

{
x ∈ Fmq | ch(x) 6= ch′(x) for some h, h′ ∈ HD

}
.

Call a hyperplane h ∈ HD bad if at least 1
2δ
m−1 fraction of its points are in B, and good otherwise. A

line is good if it is contained in some good hyperplane h ∈ HD, and bad otherwise. Further, define the
set B′ of super-bad points

B′ := {x ∈ B | ∀h ∈ HD through x is bad or ∃h, h′ ∈ HD through x such that ch(x) 6= ch′(x)}.

Claim IV.1. If h, h′ ∈ HD are good hyperplanes that differ in only one direction, then ch|h∩h′ = ch′ |h∩h′ .
In particular, every bad point is in a bad hyperplane.
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Proof. Suppose b ∈ h ∩ h′ and ch(b) 6= ch′(b). Let h have directions a1, . . . ,am−2,a and let h′ have
directions a1, . . . ,am−2,a′. Let l be the line through b in direction a1. Since ch|l, ch′ |l ∈ C disagree on b,
they are distinct codewords and hence disagree on at least δq points, say x1, . . . ,xδq. For each i ∈ [δq],
let hi ∈ HD be the hyperplane through xi in directions a2, . . . ,am−2,a,a

′. Since ch(xi) 6= ch′(xi),
that means chi disagrees with one of ch, ch′ at xi. Without loss of generality, suppose ch disagrees with
ch1
, . . . , chδq/2 . We will show that h is bad, which proves the first part of the claim.

For each i ∈ [δq], let vi = hi ∩ h, which is the subspace of dimension m − 2 through xi spanned
by directions a2, . . . ,am−2,a. Since vi ∈ V m−2

D , the restrictions ch|vi , chi |vi ∈ C⊗m−2 are codewords
and are distinct because they disagree on xi, therefore they disagree on at least δm−2qm−2 points in vi,
which are therefore bad. Thus, each hi contributes δm−2qm−2 bad points to h, for a total of 1

2δ
m−1qm−1

bad points.
For the second part, suppose b ∈ B is a bad point. We will show that b lies in a bad hyperplane.

By definition, there are two hyperplanes h, h′ ∈ HD such that ch(b) 6= ch′(b). Suppose h has directions
a1, . . . ,am−1 and h′ has directions a′1, . . . ,a

′
m−1. Define h0 := h, and for i ∈ [m − 1], define hi ∈

HD to be the hyperplane through b in directions a′1, . . . ,a
′
i,ai+1, . . . ,am−1. Consider the sequence

h0, h1, . . . , hm−1 of hyperplanes. For each i, the hyperplanes hi, hi+1 differ in at most one direction.
Since ch0

(b) 6= chm−1
(b), there exists some i such that chi(b) 6= chi+1

(b), and by the first part of the
claim it follows that one of hi, hi+1 is bad.

Claim IV.2. ρ ≥ |F |qm + |B|
qm( |D|m−1)

Claim IV.3. There are less than 1
2δ
m−1q bad hyperplanes.

Proof. By Claim IV.2, there are at most |B| ≤ ρ
( |D|
m−1

)
qm bad points. Each bad hyperplane has at least

δm−1qm−1/2 bad points by definition. Each bad point has at most
( |D|
m−1

)
bad hyperplanes through it.

Therefore, there are at most

|B|
δm−1qm−1/2

·
(
|D|
m− 1

)
≤ 2ρ

δm−1

(
|D|
m− 1

)2

q <
1

2
δq

bad hyperplanes.

Now we proceed to prove the lemma. We construct a codeword c ∈ CmD with δ(r, c) ≤ ρ
( |D|
m−1

)
in

stages, as follows. First, for x ∈ G ∪ F , we define c(x) := ch(x) for any hyperplane h ∈ HD through
x. This is well-defined since, by definition of G and F , all hyperplanes h ∈ HD agree on the value
ch(x). Furthermore, since c(x) = ch(x) = r(x) for x ∈ G, we already guarantee that δ(r, c) ≤ |F |+|B|qm ≤
ρ
( |D|
m−1

)
.

For x ∈ B \B′, define c(x) := ch(x) for any good hyperplane h ∈ HD through x, whose existence is
guaranteed by the fact that x /∈ B′. This is well-defined because if h, h′ ∈ HD are both good hyperplanes
through x, then it follows from the fact that x /∈ B′ that ch(x) = ch′(x).

Claim IV.4. Let P be a plane in directions a1,a2 ∈ D. For each i ∈ {1, 2}, there are less than 1
2δq

lines in P in direction ai which intersect B′ or are bad.

Proof. By symmetry, it suffices to consider i = 1. Let a3, . . . ,am ∈ D be some other directions, so that
a1, . . . ,am form a basis for Fmq . Let l1, . . . , lk be lines P in direction a1 such that, for each j ∈ [k],
lj intersects B′ or is bad. It suffices to exhibit, for each j ∈ [k], a bad hyperplane hj ∈ HD containing
lj which has direction a1 but not a2, for then h1, . . . , hk would be distinct bad hyperplanes, and by
Claim IV.3, k < 1

2δq.
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Fix j ∈ [k] and l := lj . If l is bad, then we are done, since any hyperplane containing l, in particular
the hyperplane in directions a1,a3, . . . ,am, is bad. Now suppose l has a point x ∈ l∩B′. Let h ∈ HD be
the hyperplane through x in directions a1,a3, . . . ,am. If h is bad, we are done. Otherwise, since x ∈ B′,
there exists another good hyperplane h′ ∈ D, in directions a′1,a

′
3, . . . ,a

′
m, such that ch(x) 6= ch′(x).

Without loss of generality, suppose a2 /∈ {a′3, . . . ,a′m}. For each i ∈ {0, . . . ,m − 2}, define hi ∈ HD

to be the hyperplane through x in directions a1,a3, . . . ,am−i,a
′
m−i+1, . . . ,a

′
m, and define hm−1 := h′.

For every i, hi and hi+1 differ in at most one direction. Note that for every i ∈ {0, 1, . . . ,m − 2}, hi
contains the direction a1 and does not contain the direction a2. We will show that hi is bad for some
i ≤ m − 2. Since ch0

(x) 6= chm−1
(x), there exists some i ≤ m − 2 such that chi(x) 6= chi+1

(x), and
therefore, by Claim IV.1, one of hi, hi+1 is bad. If i < m−2, then i, i+ 1 ≤ m−2, and so we are done.
If i = m− 2, then by assumption h′ is good, so it must be that hm−2 is bad.

Claim IV.5. If l ∩B′ = ∅, then for every x ∈ l there is a codeword cx ∈ C such that cx(x) = c(x) and
δ(cx, c|l) < δ

2 .

Proof. Let a1 be the direction of l. Let h be a good hyperplane through x and let a2 be a direction
in h, and let a3, . . . ,am ∈ D so that a1, . . . ,am is a basis of Fmq . Consider the plane P through x in
directions a1,a2. By Claim IV.4, in each direction ai, there are at least (1 − δ

2)q good lines in P in
direction ai. Therefore, c restricted to any of these good lines is a codeword of C, and hence we can
extend the restriction of c to these good lines in P to a codeword cP ∈ C⊗2 on P . Define cx := cP |l.
Then cx(x) = c(x) since the line l′ through x in direction a2 is a good line (as it lies in h) and so
cP |l′ = c|l′ . Extending this reasoning to the (1 − δ

2)q good lines in P intersecting l, we also see that
δ(cx, c|l) < δ

2 .

Claim IV.6. If l is a line and l ∩B′ = ∅, then c|l ∈ C.

Proof. Fix some x0 ∈ l. For each x ∈ l, let cx be the codeword guaranteed by Claim IV.5. Then, for every
x ∈ l, δ(cx0

, cx) ≤ δ(cx0
, c|l) + δ(c|l, cx) < δ, therefore cx0

= cx. Moreover, cx0
(x) = cx(x) = c(x), so

c|l = cx0
∈ C.

We proceed to define c(x) for x ∈ B′. For such an x, pick any line l ∈ LD through x, extend c|l\B′
to a codeword cl ∈ C, and define c(x) := cl(x). The argument that this is well-defined is different
from the previous argument. Suppose l1, l2 ∈ LD are two lines through x, in directions a1,a2 ∈ D,
respectively. Let P be the unique plane containing l1, l2. By Claim IV.4, in each direction a1,a2, there
are less than δ · q lines in that direction in P which intersects B′. In particular, this implies that l1, l2
each contain less than δ · q points from B′. The plane P can be parametrized by x + a1T1 + a2T2. By
what we just showed, there are sets S1, S2 ⊆ Fq of size |S1|, |S2| > (1−δ) ·q such that the sub-rectangle
R := {x + a1t1 + a2t2 | t1 ∈ S1, t2 ∈ S2} contains no points from B′, and therefore c has already
been defined on R. By Claim IV.6, on each line l in R in either direction a1 or a2, c|l ∈ C. Applying
the erasure-decoding properties of tensor codes, we see that c|R can be uniquely extended to a tensor
codeword cP ∈ C⊗2 on P , and this gives a way to extend c|li\B′ to the codeword cli = cP |li ∈ C for
i ∈ {1, 2}. Therefore, the extensions cl1 , c|l2 agree on x since cl1(x) = cP (x) = cl2(x), and moreover
for each line li this extension is unique since each line has less than δ · q points from B′.

Now that we have defined c : Fmq → Fq and have shown that δ(r, c) ≤ ρ
( |D|
m−1

)
, it only remains to show

that c ∈ CmD . Let l ∈ LD. If l is good, then we are done, since l is contained in some good hyperplane
h ∈ HD, so c(x) = ch(x) for every x ∈ l, and hence c|l = ch|l ∈ C. If l ∩B′ = ∅, then c|l ∈ C follows
from Claim IV.6.

Finally, the remaining case is when l is bad and intersects B′. In this case, by the way we defined c(x)
for x ∈ B′, we showed that for any line l through x ∈ B′, c|l ∈ C by extending c|l\B′ to a codeword.
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V. ROBUSTNESS FOR LARGE DIMENSION

In this section, we prove our main result:

Theorem V.1. Let ρ , Ep[δ(r|p, C↑2)], where p is a random plane (affine subspace of dimension 2).
Let α be the 2-dimensional robustness of C↑4 given by Corollary III.7. If ρ < αδ3

400 − 3q−1, then ρ ≥(
1− δ

4

)
· δ(r, C↑m). In particular, C↑m is (α′, 2)-robust, where α′ ≥ δ72

2·1031 .

Notation: Throughout Section V, fix the received word r : Fmq → Fq and ρ , Ep[δ(r|p, C↑2)], and
we will assume that 0 < ρ < α1δ3

400 − 3q−1. The case where α1δ3

400 > 3q−1 is easily dealt with at the end
of the proof by using Corollary II.8. Note that, since α, δ ≤ 1, this implies q−1 ≤ δ

1200 . Throughout this
section we will assume m ≥ 4. If m < 4 we can pad the function f to get a function f̂ : F4

q → Fq
(by setting f̂(x,y) = f(x) for every x ∈ Fmq and y ∈ F4−m

q ) and applying our tester to f̂ . We will
typically use l, p, w to denote affine lines, planes and 4 dimensional subspaces respectively. For any
affine subspace A ⊆ Fmq , let cA ∈ C↑dim(A) be the codeword nearest to r|A, breaking ties arbitrarily. Let
ρA , Ep⊆A[δ(r|p, C↑2)], where the expectation is taken over uniformly random plane p ⊆ A. Fix the
following constants:

γ ,
αδ2

40
− αq−1

ε ,
ρ+ 2q−1

γ
.

In particular, these constants are chosen so that the following bounds hold:

20δ−1(α−1γ + q−1) ≤ δ

2

ε ≤ δ

10
.

Overview: This proof is a straightforward generalization of “bootstrapping” proofs originating in
the work of Rubinfeld and Sudan [RS96] and which also appears in [ALM+98], [AS03], [Aro94]. Our
writeup in particular follows [Aro94]. Our approach is to define a function c : Fmq → Fq and then show
that it is both close to r and a codeword of C↑m. The definition of c is simple: for every x ∈ Fmq , consider
the opinion cl(x) for every line l through x, and define c(x) as the majority opinion. We need to show
that c is well-defined (the majority is actually a majority). Our main technical lemma (Lemma V.4) of
this section shows that most lines agree with each other, so c is well-defined. Lemma V.4 uses Claim V.2,
which shows that for a 4-dimensional affine subspace w, if ρw is small, then for every x ∈ w, most
lines l ⊆ w satisfy cl(x) = cw(x). To prove Claim V.2 we use the results of Section III, in particular the
robustness of the plane test in m = 4 dimensions (Corollary III.7). Since the average δ(r|l, cw|l) over l
through x is about δ(r|w, cw), by robustness this is less than α−11 ρw, which is small since ρw is small.
Therefore, for most l, δ(r|l, cw|l) is small and so it must be that cl = cw|l.

Once we have shown that c is well-defined, showing that c is close to r requires just a bit of calculation.
Showing that c ∈ C↑m involves more work. For each line l, define c′l ∈ C to be the nearest codeword to
c|l. Fix a line l and a point x ∈ l. We want to show that c|l(x) = c′l(x). The idea is to show the existence
of a “good” 4-dimensional w ⊇ l such that ρw is small and for more than 1− δ

2 fraction of points y ∈ l
(including x) are “good” in the sense that c(y) = cl′(y) for a non-negligible fraction of lines l′ through
y. Once we have such a w, we show that for every good y ∈ l, c(y) = cw(y). Since l has more than
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1− δ
2 fraction good points, this implies that δ(c|l, cw|l) < δ

2 , hence c′l = c|l, so c′l(x) = c|w(x) = c(x),
as desired.

Claim V.2. If w ⊆ Fmq be a 4-dimensional affine subspace with ρw ≤ γ, then for every x ∈ w, at least
1− δ

20 fraction of lines l ⊆ w satisfy cl(x) = cw(x).

Proof. Fix x ∈ w. Let U be the set of lines l containing x such that δ(r|l, cw|l) < 20δ−1(α−1ρw + q−1).
By Corollary III.7, El⊆w

l3x
[δ(r|l, cw|l)] ≤ δ(r|w, cw) + q−1 ≤ α−1ρw + q−1, so by Markov’s inequality, the

probability that δ(r|l, cw|l) ≥ 20δ−1(α−1ρw + q−1) is at most α−1ρw+q−1

20δ−1(α−1
1 ρw+q−1)

= δ
20 . For l ∈ U , since

δ(r|l, cw|l) < 20δ−1(α−1ρw+q−1) ≤ δ
2 and cw|l ∈ C, we have cl = cw|l and therefore cl(x) = cw(x).

The following claim says that Ew[ρw] ≈ ρ, even if we insist that w contains a fixed t-dimensional
subspace.

Claim V.3. For any line l ⊆ Fmq , Ew⊇l[ρw] ≤ ρ + 2q−1, where w is a random 4-dimensional affine
subspace containing l. In particular, for any point x ∈ Fmq , Ew3x[ρw] ≤ ρ+ 2q−1.

Proof. Observe that

ρ = Ep
[
δ
(
r|p, C↑2

)]
≥ Ep:l∩p=∅

[
δ
(
r|p, C↑2

)]
· Pr
p

[l ∩ p = ∅]

(Lemma II.15) ≥ Ep:l∩p=∅
[
δ
(
r|p, C↑2

)]
·
(

1− q−(m−3)
)
.

Therefore,

Ew⊇l[ρw] = Ew⊇l
[
Ep⊆w

[
δ(r|p, C↑2)

]]
≤ Ew⊇l

[
Ep⊆w

[
δ(r|p, C↑2)

∣∣∣ l ∩ p = ∅
]

+ Pr
p⊆w

[l ∩ p 6= ∅]
]

(Lemma II.15) ≤ Ew⊇l
[
Ep⊆w

[
δ(r|p, C↑2)

∣∣∣ l ∩ p = ∅
]]

+ q−1

= Ev:l∩p=∅[δ(r|p, C↑2)] + q−1

≤ ρ

1− q−(m−3)
+ q−1

≤ ρ+ 2q−1

Lemma V.4 (Main). For every x ∈ Fmq , there is a collection U1 of at least 1− δ
5 −

δ
600 fraction of the

lines through x, such that cl(x) = cl′(x) for every l, l′ ∈ U1.

Proof. Let U be the set of all lines l through x. Partition U into disjoint collections U1, . . . , Uk with
|U1| ≥ · · · ≥ |Uk| according to the value of cl(x). We will show that Prl3x[l ∈ U1] ≥ 1− δ

5 −
δ

600 . For
every 4-dimensional subspace w, let Uw be the collection of lines l through x, guaranteed by Claim V.2,
satisfying cl(x) = cw(x). Then

Pr
l3x

[l ∈ U1] ≥ Pr
l,l′3x

[∃i l, l′ ∈ Ui]

= Pr
l,l′3x

[cl(x) = cl′(x)]
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≥ Pr
l 6=l′3{x}

[cl(x) = cl′(x)]− q−(m−1)

= Ew3x

 Pr
l,l′⊆w
l 6=l′3{x}

[cl(x) = cl′(x)]

− q−(m−1)
≥ Ew3x

 Pr
l,l′⊆w
l,l′3x

[cl(x) = cl′(x)

− q−3 − q−(m−1)
≥ Ew3x

 Pr
l,l′⊆w
l,l′3x

[cl(x) = cl′(x)

− δ

600

≥ Ew3x

 Pr
l,l′⊆w
l,l′3x

[cl(x) = cl′(x)]

∣∣∣∣∣∣ ρw ≤ γ
 · Pr

w3x
[ρw ≤ γ]− δ

600

≥ Ew3x

 Pr
l,l′⊆w
l,l′3x

[l, l′ ∈ Uw]

∣∣∣∣∣∣ ρw ≤ γ
 · Pr

w3x
[ρw ≤ γ]− δ

600

(Claim V.2) ≥
(

1− δ

20

)2

· Pr
w3x

[ρw ≤ γ]− δ

600

(Markov) ≥
(

1− δ

20

)2

·
(

1− Ew3x[ρw]

γ

)
− δ

600

(Claim V.3) ≥
(

1− δ

20

)2

·
(

1− ρ+ 2q−1

γ

)
− δ

600
≥ 1− δ

10
− ρ+ 2q−1

γ
− δ

600

= 1− δ

10
− ε− δ

600
≥ 1− δ

5
− δ

600

We are now ready to prove the main theorem.

Proof of Theorem V.1. We will define a function c : Fmq → Fq and then show that it is close to r and is
a codeword of C↑m. For x ∈ Fmq , define c(x) , Majorityl3x{cl(x)}, where the majority is over lines l
through x. Since δ

5 + δ
600 <

1
2 , it follows from Lemma V.4 that c is well-defined.

Next, we show that c is close to r. Indeed,

ρ = Ep[δ(r|p, cp)]
≥ El[δ(r|l, cl)]
= El

[
Ex∈l

[
1cl(x)6=r(x)

]]
= Ex

[
El3x

[
1cl(x) 6=r(x)

]]
≥ Ex

[
El3x

[
1cl(x) 6=r(x)

] ∣∣ c(x) 6= r(x)
]
· Pr

x
[c(x) 6= r(x)]

≥ Ex

[
Pr
l3x

[cl(x) = c(x)]

∣∣∣∣ c(x) 6= r(x)]

]
· δ(r, c)

(Lemma V.4) ≥
(

1− δ

4

)
· δ(r, c).
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Finally, we show that c ∈ C↑m. Let l ⊆ Fmq a line. We wish to show that c|l ∈ C. Let c′l ∈ C be the
codeword of C nearest to c|l (not to be confused with cl, the nearest codeword to r|l). Let x ∈ l. We will
show that c′l(x) = c|l(x). For a 4-dimensional affine subspace w ⊆ Fmq , we say a point y ∈ w is good
for w if Prl′⊆w

l′3y
[cl′(y) = c(y)] > δ

20 . We will show, by a union bound, that there exists a 4-dimensional

affine subspace w ⊇ l such that
1) ρw ≤ γ;
2) x is good for w;
3) more than 1− δ

2 fraction of points y ∈ l are good for w.
Observe that for any y ∈ l, picking a random 4-dimensional w containing l and then picking a random

line l′ ⊆ w through y that intersect l only on y is equivalent to picking a random line l′ through y that
intersect l only on y and then picking a random 4-dimensional w containing both l, l′. Therefore, for any
fixed y ∈ l

Ew⊇l

 Pr
l′⊆w
l′3y

[cl′(y) 6= c(y)]

 = E w⊇l
l′⊆w,l′3y

[
1cl′ (y)6=c(y)

]
≤ E w⊇l

l′⊆w,l′3y

[
1cl′ (y)6=c(y) | l ∩ l

′ = {y}
]

+ Pr
w⊇l

l′⊆w,l′3y

[
l ∩ l′ 6= {y}

]
(Lemma II.16) ≤ El′3y

[
1cl′ (y)6=c(y) | l ∩ l

′ = {y}
]

+ q−2

(Lemma II.16) ≤ El′3y
[
1cl′ (y)6=c(y)

]
+ q−(m−2) + q−2

(Lemma V.4 and definition of c) ≤ δ

5
+

δ

600
+ 2q−2 ≤ δ

5
+

δ

300
≤ δ

4
.

Therefore, by Markov’s inequality, for any fixed y ∈ l,

Pr
w⊇l

[y is not good for w] = Pr
w⊇l

[
Pr

l′⊇w,l′3y
[cl′(y) 6= c(y)] ≥ 1− δ

20

]
≤

δ
4

1− δ
20

≤ 5

19
· δ.

In particular, this applies for y = x. Further applying Markov’s inequality, we find that

Pr
w⊇l

[
fraction of not good y in l ≥ δ

2

]
≤ 5δ/19

δ/2
=

10

19
.

Finally, since Ew⊇l[ρw] ≤ ρ+ 2q−1 (by Claim V.3), we have

Pr
w⊇l

[ρw > γ] ≤ ρ+ 2q−1

γ
= ε ≤ δ

10
.

Since δ ≤ 1 and 5
19 + 10

19 + 1
10 < 1, by the union bound such a desired w exists.

Now that we have such a subspace w, consider cw. We claim that it suffices to prove that if y ∈ l
is good, then cw(y) = c(y). Indeed, since more than 1 − δ

2 fraction of points in l are good, we have
δ(cw|l, c|l) < δ

2 . Therefore cw|l = c′l, and since x is good, we have c(x) = cw(x) = c′l(x) as desired.
It remains to prove that cw(y) = c(y) for good y ∈ u. By Claim V.2, at least 1 − δ

20 fraction of lines
l′ ⊆ w through y satisfy cl′(y) = cw(y). Since y is good, more than δ

20 fraction of lines l′ ⊆ w

18



through y satisfy cl′(y) = c(y). Therefore, there must be some line l′ ⊆ w through y which satisfies
cw(y) = cl′(y) = c(y).

Finally, for the robustness statement: if q−1 ≥ δ24

2.5·1010 , then by Corollary II.8, the robustness is at least
q−3

2 ≥
δ72

2·1031 . Otherwise, the robustness is at least α1δ3

57,600·400 − 3q−1 ≥ δ24

1011 .
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and Combinatorial Optimization. Algorithms and Techniques - 16th International Workshop, APPROX 2013, and
17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, volume 8096
of Lecture Notes in Computer Science, pages 671–682. Springer, 2013.

[HSS11] Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivariate polynomials over small prime
fields. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 629–637. IEEE, 2011.

[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree polynomials over
prime fields. Random Struct. Algorithms, 35(2):163–193, 2009.

[KL10] Tali Kaufman and Shachar Lovett. Testing of exponentially large codes, by a new extension to weil bound for
character sums. Electronic Colloquium on Computational Complexity (ECCC), 17:65, 2010.

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. Comput., 36(3):779–802, 2006.
[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In STOC, pages 403–412,

2008.
[MR06] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size. In Proceedings of the

38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 21–30, 2006.
[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing.

SIAM Journal on Computing, 25(2):252–271, April 1996.
[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability

PCP characterization of NP. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, 1997. ACM Press.

[Val05] Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In Chandra Chekuri, Klaus
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