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Proofs and Theorems

= Conventional belief: Proofs need to be read
carefully to be verified.

= Modern constraint: Don’t have the time (to do
anything, leave alone) read proofs.

= This talk:
s New format for writing proofs.

s Efficiently verifiable probabilistically, with small
error probability.

s Not much longer than conventional proofs.



Outline of talk

» Quick primer on the Computational perspective
on theorems and proofs (proofs can look very
different than you’d think).

= Definition of Probabilistically Checkable Proofs
(PCPs).

= Overview of a new construction of PCPs due to
Irit Dinur.



Theorems: Deep and Shallow

= A Deep Theorem:

Vol 2oL n >3 gyl ALnn

n Proof: (too long to fit in this section).

= A Shallow Theorem:

m The number 3190966795047991905432 has a
divisor between 25800000000 and
25900000000.

s Proof: 25846840632.



Computational Perspective

= Theory of NP-completeness:
s Every (deep) theorem reduces to shallow one.

Given theorem 7T and bound n on the length (in bits)
of its proof there exist integers 0 < A, B,C < 27"
such that A has a divisor between B and C

if and only if T" has a proof of length n.

= Shallow theorem easy to compute from deep
one. (A, B,C computable in poly(n) time from T'.)

» Shallow proofs are not much longer.



More Broadly: New formats for proofs

New format for proof of T: Divisor D (A,B,C don’t have to be
specified since they are known to (computable by) verifier.)

Theory of Computation replete with examples of such
“alternate” lifestyles for mathematicians (fermats for
proofs).

s Equivalence: (1) new theorem can be computed from old one
efficiently, and (2) new proof is not much longer than old one.

Question: Why seek new formats? What
benefits can they offer? -, they help




Probabilistically Checkable Proofs

= How do we formalize “formats”?

= Answer: Formalize the Verifier instead. “Format”
now corresponds to whatever the verifier accepts.

= Will define PCP verifier (probabilistic, errs with
small probability, reads few bits of proof) next.



PcP Verifier  [040010100101010101010)

1. Reads Theorem l

. ~— HTHTTH
2. Tosses coins
3. Reads few bits of proof

4. Accepts/Rejects.

T Valid = 4 P s.t. V accepts w.p. 1. ¢

: : 1
T invalid = V P V accepts w.p. < 5.



Features of interest

= Number of bits of proof queried must be small (constant?).

= Length of PCP proof must be small (linear?, quadratic?)
compared to conventional proofs.

= Optionally: Classical proof can be converted to PCP proof
efficiently. (Rarely required in Logic.)

= Do such verifiers exist?
s PCP Theorem [1992]: They do.

= Today — New construction due to Dinur.



Part Il — PCP Construction of Dinur



Essential Ingredients of PCPs

= Locality of error:

s If theorem Is wrong (and so “proof” has an
error), then error in proof can be pinpointed
locally (since it is found by verifier that reads
only few bits of proof).

= Abundance of error:

s Errors in proof are abundant (i.e., easily seen
In random probes of proof).

» How do we construct a proof system with these
features?



Locality: From NP-completeness

= 3-Coloring is NP-complete:

T P

Color gertices s.t. endpoints of edge have
differ

colors.




3-Coloring Verifier:

= To verify T

= Verifier constructs

= EXxpects as proof.

= To verify: Picks an edge and verifies endpoints
distinctly colored.

= Error: Monochromatic edge = 2 pieces of proof.
= Local! But errors not frequent.



Amplifying Error

= Dinur Transformation: There exists a linear-time
algorithm A:

e A(G) 3-colorable if G is 3-colorable

e Fraction of monochromatic edges in A(G)
is twice the fraction in G
(unless fraction in G is > ¢).



Iterating the Dinur Transformation

» Logarithmically many iterations of the Dinur
Transformation:

s Leads to a polynomial time transformation.

s Preserve 3-colorability (valid theorems map to
valid theorems).

s Convert invalid theorem into one where every
proof has g, fraction errors.



Detalls of the Dinur Transformation

x Step 1:

“Gap Amplification”: Increase number of available
colors, but make coloring more restrictive.

s Goal: Increase errors in this stage (at expense
of longer guestions).

m Step 2:

“Color reduction”: Reduce number of colors back
to 3.

s Hope: Fraction of errors does not reduce by
much (fraction will reduce though).

s Composition of Steps yields Transformation.



Step 2: Reducing #colors

= Form of classical “Reductions”: similar to task of
reducing “k-coloring” to “3-coloring”.

s Unfortunately: Classical reductions lose by factor
k. Can’t afford this.

= However: Prior work on PCPs gave a simple
reduction: Lose only a universal constant,
Independent of k. This Is good enough for Step 2.

= (So: Dinur does use prior work on PCPs, but the
simpler, more elementary, parts.)



Step 1: Increasing Error

= Task (for example): Create new graph H (and
coloring restriction) from G s.t. H is 3¢-color If G
IS 3-colorable, but fraction of “invalidly colored”
edges In H 1s twice the fraction In G.

= One idea: Graph Products.
o V(H) =V(G) X

o (u,v) &g (w,x) S u+rgw & vgx

e Coloring valid iff it is valid coordinatewise.



Graph Products and Gap Amplification

= Problem 1: Not clear that error amplifies. Non-
trivial guestion. Many counter-examples to naive
conjectures. (But might work ...)

= Problem 2: Quadratic-blow up In size. Does not
work In linear time!!!

= Dinur’s solution: Take a “derandomized graph
product”



Step 1: The final construction

» Definition of H (and legal coloring):

e Vertices of H = Balls of radius ¢ in G
e Edges of H = Walks of length ¢ in G

e Legal coloring in H: Coloring to vertices in ball
should respect coloring rules in G
and two balls should be consistent on intersection.
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Analysis of the construction.

= Does this always work?

x No! E.g., If G Is a collection of disconnected
graphs, some 3-colorable and others not.

s Fortunately, connectivity Is the only
bottleneck. If G Is well-connected, then H has
the right properties. (Intuition developed over
several decades of work In “expanders” and
“derandomization”.)

s Formal analysis: Takes only couple of pages ©



Conclusion

= A moderately simple proof of the PCP theorem.
(Hopefully motivates you. Read original paper at
ECCC. Search for “Dinur”, “Gap Amplification™).

s Matches many known parameters (but doesn’t
match others).

= E.g., [Hastad] shows can verify proof by reading
3 bits, rejecting invalid proofs w.p. .4999...

= Can’t (yet) reproduce such constructions using
Dinur’s technique.



Conclusions (contd.)

x PCPs illustrate the power of specifying a format
for proofs.

= Can we use this for many computer generated
proofs?

= More broadly: Revisits the complexity of proving
theorems vs. verifying proofs.

= Is P=NP?
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