Local Error-Detection and Error-correction

Madhu Sudan MIT

December 17, 2007

Algorithmic Problems in Coding Theory

- Code: $E: \Sigma^k \to \Sigma^n$; Image $(E) = C \subseteq \Sigma^n$; $R(C) = k/n, \, \delta(C)$ =normalized distance.
- Encoding: Fix Code C and associated $E: \Sigma^k \to \Sigma^n$. Given $m \in \Sigma^k$, compute E(m).
- Error-detection (ε-Testing): Given x ∈ Σⁿ, decide if ∃m ∈ Σ^k s.t. x = E(m). Given x ∈ Σⁿ, decide if ∃m ∈ Σ^k s.t. δ(E(m), x) ≤ ε.
- Error-correction (Decoding): Given $x \in \Sigma^n$, compute $m \in \Sigma^k$ that minimizes $\delta(E(m), x)$ (provided $\delta(E(m), x) \leq \epsilon$).

December 17, 2007

Sublinear time algorithmics

Given $f: \{0,1\}^k \to \{0,1\}^n$ can it be "computed" in o(k,n) time?

- Answer 2: VESarify Measenweilting to the time it takpesent mpterahtieiting ves/vaite the putput
 - 2. Represent output implicitly

3. Compute function on approximation to input. Extends to computing relations as well.

December 17, 2007

Sub-linear time algorithms

Initiated in late eighties in context of

- Program checking
- Interactive Proofs/PCPs

Now successful in many more contexts

- Property testing/Graph-theoretic algorithms
- Sorting/Searching
- Statistics/Entropy computations
- (High-dim.) Computational geometry
- Many initial results are coding-theoretic!

Sub-linear time algorithms & Coding

- Encoding: Not reasonable to expect in sub-linear time.
- Testing? Decoding? Can be done in sublinear time.
 - In fact many initial results do so!
- Codes that admit efficient ...
 - ... testing: Locally Testable Codes (LTCs)
 - decoding: Locally Decodable Codes (LDCs).

Rest of this talk

- Definitions of LDCs and LTCs
- Quick description of known results
- Some basic constructions
- (Time permitting) Yekhanin's construction of LDCs.

Definitions

December 17, 2007

Locally Decodable Code

Code: $C: \Sigma^k \to \Sigma^n$ is (q, ϵ) -Locally Decodable if \exists Decoder D s.t. given $i \in [k]$ and oracle w s.t. $\exists m \ \delta(w, C(m)) \leq \epsilon \leq \delta(C)/2$,

D(i) reads q(n) random positions of wand outputs m_i w.p. at least 2/3.

n

What if $\epsilon > \delta(C)/2$? Might need to report a list of upto ℓ codewords.

December 17, 2007

Locally List-Decodable Code

Code: C is (ϵ, ℓ) -list-decodable if $\forall w \in \Sigma^n$, # codewords $c \in C$ s.t. $\delta(w, c) \leq \epsilon$ is at most ℓ . C is (q, ϵ, ℓ) -locally list-decodable if \exists Decoder D s.t. given $i \in [k]$ and $j \in [\ell]$ and oracle w s.t. m_1, \ldots, m_ℓ are all messages satisfying $\delta(w, C(m_j)) \leq \epsilon$

D(i, j) reads q(n) random positions of wand outputs $(m_j)_i$ w.p. at least 2/3.

December 17, 2007

History of definitions

Constructions predate formal definitions

- Goldreich-Levin '89].
- Beaver-Feigenbaum '90, Lipton '91].
- [Blum-Luby-Rubinfeld '90].
- Hints at definition (in particular, interpretation in the context of error-correcting codes): [Babai-Fortnow-Levin-Szegedy '91].
- Formal definitions
 - [S.-Trevisan-Vadhan '99] (local list-decoding).
 - [Katz-Trevisan '00]

Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ) -Locally Testable if \exists Tester T s.t.

"Weak" definition: hinted at in [BFLS], explicit in [RS'96, Arora'94, Spielman'94, FS'95].

December 17, 2007

Strong Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ) -Locally Testable if \exists Tester T s.t.

"Strong" Definition: [Goldreich-S. '02]

December 17, 2007

Motivations

December 17, 2007

Motivations for Local decoding

• Suppose $C \subseteq \Sigma^N$ is locally-decodable code for $N = 2^n$. (Further assume can locally decode bits of the codeword, and not just bits of the message.)

• $c \in C$ can be viewed as function $c : \{0, 1\}^n \to \Sigma$.

• Local decoding $\approx \Rightarrow$ can compute c(x) for every x, if one can compute c(x') for most x'. Relates averagecase complexity to worst-case. [Lipton, STV]

• Alternate interpretation: Compute c(x) without revealing x. Leads to Instance Hiding [BF], Private Information Retrieval [CGKS].

Motivation for Local-testing

- No generic applications known.
- However,
 - Interesting phenomenon on its own.
 - Intangible connection to Probabilistically Checkable Proofs (PCPs).
 - Potentially good approach to understanding limitations of PCPs (though all resulting work has led to improvements).

Contrast between decoding and testing

- Decoding: Property of words near codewords.
- Testing: Property of words far from code.

Decoding:

- Motivations happy with n = quasi-poly(k), and q = poly log n.
- Lower bounds show q = O(1) and n = nearlylinear(k) impossible.
- Testing: Better tradeoffs possible! Likely more useful in practice.

• Even conceivable: n = O(k) with q = O(1)?

Some LDCs and LTCs

December 17, 2007

Codes via Multivariate Polynomials

Message: coefficients of deg t, m-variate polynomial P over finite field \mathbb{F}

 \mathbb{F}^m

(Reed Muller code)

Encoding: evaluations of P on all of \mathbb{F}^m . **Parameters:** $k \approx (t/m)^m$, $n = |\mathbb{F}|^m$, $\delta \ge t/|\mathbb{F}|$.

December 17, 2007

Basic insight to locality

- *m*-variate polynomial of degree t restricted to *m'* < *m*-dim. (affine) subspace is polynomial of degree *t*.
- Local Decoding: Pick subspace through point x of interest, and decode on subspace.

Query complexity $q = |\mathbb{F}|^{m'}$; Time = poly(q). $m' \ll m \Rightarrow$ sublinear!

Local Testing:

Verify f restricted to space is of degree t. Same complexity.

Summary of Constructions

Polynomial Codes: (Locally decodable and testable) Locality q with $n = \exp(k^{1/(q-1)})$

 Polynomial Codes + Composition/Concatenation: Local Testability with q = O(1) and $n = \tilde{O}(k) = k \cdot (\log k)^c$. Local Decodability with $n = \exp(k^{1/\operatorname{poly}(q)})$

Codes based on "Algebraic Designs" [Yekhanin]
 Local Decodability with q = 3 and $n = \exp(k^{\epsilon})$

[Yekhanin '07]'s LDCs

December 17, 2007

Recall: Combinatorial Designs

- Families of Sets: $S_1, \ldots, S_k, T_1, \ldots, T_k$. $S_i, T_i \subseteq \{1, \ldots, m\}.$
- Restrictions on Intersections:
 - E.g.,
 - i vs. i: $|S_i \cap T_i|$ even. (Large) (Small) i vs. j: $|S_i \cap T_j|$ odd. (Small) (Large)

Basic Question:

How large can k be? (As a function of m?) Typical answer $k = \Theta(m)$

December 17, 2007

[Yekhanin]'s Algebraic Designs

Families of Vectors: $u_1, \ldots, u_k, v_1, \ldots, v_k$. $u_i, v_i \in \mathbb{F}_p^m$. p small prime

Restrictions on Inner Products:

 $\begin{array}{ll} \langle u_i, v_i \rangle = 0 & \langle u_i, v_i \rangle = 0 \\ \langle u_i, v_j \rangle \neq 0 & \langle u_i, v_j \rangle \in S \not \ni 0 \\ \text{Basic p-design} & (p, S)$-design \\ \end{array}$ $\begin{array}{l} \text{Basic Question: How large can } k \text{ be?} \\ \binom{m}{p-1} \sim m^{p-1} & \text{At most } m^{|S|}! \\ \text{Can we achieve it?} \end{array}$

[Yekhanin]'s Algebraic Designs

Families of Vectors: $u_1, \ldots, u_k, v_1, \ldots, v_k$. $u_i, v_i \in \mathbb{F}_p^m$. p small prime

Restrictions on Inner Products:

 $\begin{array}{ll} \langle u_i, v_i \rangle = 0 & \langle u_i, v_i \rangle = 0 \\ \langle u_i, v_j \rangle \neq 0 & \langle u_i, v_j \rangle \in S \not \ni 0 \\ \text{Basic p-design} & (p, S)$-design \\ \end{array}$ $\begin{array}{l} \text{Basic Question: How large can } k \text{ be?} \\ \binom{m}{p-1} \sim m^{p-1} & \text{At most } m^{|S|}! \\ \text{Can we achieve it?} \end{array}$

Lemma 1: Basic *p*-design with k vectors in \mathbb{F}_p^m \Rightarrow *p*-query (binary) LDCs mapping k-bits to p^m bits

$$k = m^{p-1} \quad \Rightarrow \quad n = \exp(k^{1/p-1})$$

(Matches some of the early constructions)

Lemma 2: $\exists q = q(p, S) \leq p$ s.t. (p, S)-design with k vectors in \mathbb{F}_p^m $\Rightarrow q$ -query LDCs mapping k bits to p^m bits. q(p, S) - Algebraic niceness of $S \subseteq \mathbb{F}_p^*$.

December 17, 2007

Lemma 2: $\exists q = q(p, S) \leq p$ s.t. (p, S)-design with k vectors in \mathbb{F}_p^m $\Rightarrow q$ -query LDCs mapping k bits to p^m bits.

q(p, S) - algebraic niceness of $S \subseteq \mathbb{F}_p^*$.

Definition: S is q-algebraically nice if $\exists a q$ -sparse polynomial $h(x) \in \mathbb{F}_2[x]/(x^p - 1)$ s.t. ideal generated by $\{h(x^\beta) | \beta \in S\}$ is non-trivial.

(One of two equivalent definitions)

Lemma 2:
$$\exists q = q(p, S) \leq p$$
 s.t.
(p, S)-design with k vectors in \mathbb{F}_p^m
 $\Rightarrow q$ -query LDCs mapping k bits to p^m bits.

q(p,S) - algebraic niceness of $S \subseteq \mathbb{F}_p^*$.

Example: p = 127; $S = \{1, 2, 4, 8, 16, 32, 64\}$ S is 3-algebraically nice m^7 long (p, S)-designs exist!

 \Rightarrow 3-query LDC mapping k bits to $\exp(k^{1/7})$ bits

Lemma 2:
$$\exists q = q(p, S) \leq p$$
 s.t.
(p, S)-design with k vectors in \mathbb{F}_p^m
 $\Rightarrow q$ -query LDCs mapping k bits to p^m bits.

q(p, S) - algebraic niceness of $S \subseteq \mathbb{F}_p^*$.

Lemma 3: $p = 2^t - 1 \Rightarrow S = \{1, 2, 4, \dots, 2^{t-1}\}$ is 3-algebraically nice.

Lemma 4: S multiplicative subgroup of \mathbb{F}_p $\Rightarrow \exists (p, S)$ -design of length $\sim m^{|S|}$.

Theorem: \exists 3-query LDC mapping k bits to $\exp(k^{0.0000001})$ bits.

Proofs?

 Disclaimer: Proof of Lemma 2, Lemma 3 too long to fit here. (Many context switches, but elementary.)

Will only attempt to show Lemmas 1 and 4.

Basic designs and LDCs

Given $u_1, \ldots, u_k; v_1, \ldots, v_k$

December 17, 2007

Basic designs and LDCs

Basic designs and LDCs

Proof of Lemma 4

Construction of Basic p-designs:

 $i \leftrightarrow \text{set of size exactly } p-1$

 $u_i = \text{characteristic vector of set } i.$

 v_i = characteristic vector of complement of set *i*.

$$\langle u_i, v_i \rangle = 0; \quad \langle u_i, v_j \rangle = |i \cap j| \in \{1, \dots, p-1\}$$

 Construction of (p,S)-designs for S multiplicative: Take u_i, v_i as above; Use ũ_i, ũ_i = p/|S|th tensor powers of u_i, v_i.

December 17, 2007

Conclusions

- Local algorithms in error-detection/correction lead to interesting new questions.
- Non-trivial progress so far.
- Limits largely unknown
 O(1)-query LDCs must have R(C) = 0 [Katz-Trevisan]