| ocal Error-Detection and
Error-correction

Madhu Sudan
MIT

December 17, 2007 Coding & Sublinear time



Algorithmic Problems in Coding Theory
» Code:E : ¥* — ¥"; Image(E) = C C X"
R(C) = k/n, §(C) =normalized distance.

= Encoding: Fix Code C and associated E : ¢ — X7
Given m € X, compute E(m).

s Error-detection (e-Testing):
Given z € X", decide if Im € X* st. z = E(m).

Given z € X", decide if Im € X* s.t. §(E(m),z) < e.

s Error-correction (Decoding):

Given x € X", compute m € X* that minimizes
d(E(m),x) (provided 6 (E(m),x) < ¢€).
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Sublinear time algorithmics

= Given/f:{0,1}* = {0,1}" can it be “computed”
in o(k,n) time?
By

x-oracle > f — f ( ii ZI@))Z

X j I where z’ ~ x

(4

= Answer 2: UESiriy We®arennalingttos the time it
lakprete fivRip IR PTRItAP )M H ERE &) tput
2. Represent output implicitly

3. Compute function on approximation to input.
Extends to computing relations as well.
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Sub-linear time algorithms

= Initiated in late eighties in context of
s Program checking
= Interactive Proofs/PCPs
= Now successful in many more contexts
s Property testing/Graph-theoretic algorithms
s Sorting/Searching
s Statistics/Entropy computations
s (High-dim.) Computational geometry
= Many initial results are coding-theoretic!
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Sub-linear time algorithms & Coding

= Encoding: Not reasonable to expect in sub-linear
time.

» Testing? Decoding? — Can be done in sublinear
time.

= In fact many initial results do so!
= Codes that admit efficient ...

= ... testing: Locally Testable Codes (LTCs)
= ... decoding: Locally Decodable Codes (LDCs).
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Rest of this talk

= Definitions of LDCs and LTCs
= Quick description of known results
= Some basic constructions

s (Time permitting) Yekhanin’s construction of
LDCs.
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Definitions
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Locally Decodable Code

Code: C : ¥* — %" is (g, €)-Locally Decodable
if 9 Decoder D s.t. given i € k]
and oracle w s.t. 3m d(w,C(m)) <e <46(C)/2,

n

/\
- N

—

D(7) reads g(n) random positions of w
and outputs m; w.p. at least 2/3.

What if € > §(C) /2?7 Might need to
report a list of upto ¢ codewords.
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Locally List-Decodable Code

Code:C is (e, £)-list-decodable if Vw € ¥,

# codewords ¢ € C' s.t. §(w,c) < e is at most /.
C'is (q, €, £)-locally list-decodable if 4 Decoder D s.t.
given ¢ € |k|] and j € /] and oracle w s.t.

mq, ..., my are all messages satisfying d(w, C'(m,)) < €
n
/\
- N

—

D(i, ) reads g(n) random positions of w
and outputs (m,); w.p. at least 2/3.
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History of definitions

s Constructions predate formal definitions
s [Goldreich-Levin '89].
s [Beaver-Feigenbaum ’90, Lipton '91].
s [Blum-Luby-Rubinfeld '90].

= Hints at definition (in particular, interpretation in
the context of error-correcting codes): [Babai-
Fortnow-Levin-Szegedy '91].

= Formal definitions
s [S.-Trevisan-Vadhan '99] (local list-decoding).
s [Katz-Trevisan '00]
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Locally Testable Codes

Code: C' C X" is (g, €)-Locally Testable
if 4 Tester T s.t.

n

/\
- N

—

T reads q(n) random positions:
o If w e C accepts w.p. 1.
o If w is e-far from C, then rejects w.p. > 1/2.

“Weak” definition: hinted at in [BFLS], explicit in
[RS’96, Arora’94, Spielman’94, FS’95].
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Strong Locally Testable Codes

Code: C' C X" is (g, €)-Locally Testable
if 4 Tester T s.t.

n

/\
- N

—

T reads q(n) random positions:
o If w e C accepts w.p. 1.
e LFor every w € X",

T rejects w.p. > Q(d(w, C)).

“Strong” Definition: [Goldreich-S. '02]
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Motivations for Local decoding

e Suppose C C 3% is locally-decodable code for N = 2".
(Further assume can locally decode bits of the codeword,
and not just bits of the message.)

e c € C can be viewed as function c¢: {0,1}" — .

e Local decoding ~=- can compute c¢(x) for every z, if
one can compute c(x’) for most z’. Relates average-
case complexity to worst-case. [Lipton, STV]

e Alternate interpretation: Compute c(x) without re-
vealing x. Leads to Instance Hiding [BF|, Private
Information Retrieval [CGKS].
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Motivation for Local-testing

= No generic applications known.
= However,
s Interesting phenomenon on its own.

= Intangible connection to Probabilistically
Checkable Proofs (PCPs).

s Potentially good approach to understanding
limitations of PCPs (though all resulting work
has led to improvements).
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Contrast between decoding and testing

s Decoding: Property of words near codewords.
s Testing: Property of words far from code.

s Decoding:
= Motivations happy with n = quasi-poly(k), and
q = poly log n.
s Lower bounds show g = O(1) and n = nearly-
linear(k) impossible.
s Testing: Better tradeoffs possible! Likely more
useful in practice.

s Even conceivable: n = O(k) with g = O(1)?
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Some LDCs and LTCs
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Codes via Multivariate Polynomials

Message: coefficients of deg ¢, m-variate polynomial P
over finite field FF

(Reed Muller code)

]F‘m
Encoding: evaluations of P on all of ™.
Parameters: k= (t/m)™, n = |F|™, § > t/|F|.
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Basic insight to locality

= m-variate polynomial of degree t restricted to
m’ < m-dim. (affine) subspace is polynomial
of degree t.

s Local Decoding:

Pick subspace through point x of interest,
and decode on subspace.

Query complexity q = \F\m/; Time = poly(q).
m’ < m = sublinear!
m Local Testing:

Verity f restricted to space is of degree t.
Same complexity:.
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Summary of Constructions

s Polynomial Codes: (Locally decodable and testable)
Locality ¢ with n = exp(k!/(¢=D)

s Polynomial Codes + Composition/Concatenation:

Local Testability with
q=0(1) and n = O(k) =k (logh).

Local Decodability with n = exp(k/Poy(2))

s Codes based on “Algebraic Designs” [Yekhanin]

Local Decodability with ¢ = 3 and n = exp(k°)
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| Yekhanin ’O7]’s LDCs
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Recall: Combinatorial Designs
s Families of Sets: S1,...,5%, 11,...,T%.
S’iaTz’ g {1,...,m}.
m Restrictions on Intersections:
m E.g.,
ivs. iz |[S; NT;| even. (Large) (Small)
ivs. j: |S;NT;| odd. (Small) (Large)

m Basic Question:

How large can k be?
(As a function of m?)

Typical answer k = ©(m)
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| Yekhanin]’s Algebraic Designs

m Families of Vectors: U1,...,Ugk, V1,5...,Vk.
Ui, V; € IF;';”’“.
p small prime

m Restrictions on Inner Products:
<u7;, ’Ui> = <uz~, Uz'> =0

(ui,vj> # 0 (ui,vj> cS % 0
Basic p-design (p, S)-design
= Basic Questiotu: How large can kibe?

( m ) ~ mP—1 At most m!°!!
p—1 Can we achieve it?
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[Y’O7] Algebraic designs and LDCs

Lemma 1: Basic p-design with & vectors in "
= p-query (binary) LDCs mapping k-bits to p"™ bits

k=mP! = n=exp(k/P 1)

(Matches some of the early constructions)

Lemma 2: dg = q(p, S) < p s.t.
(p, S)-design with k vectors in F7*
= g-query LDCs mapping k bits to p™ bits.

q(p, S) - Algebraic niceness of S C Fy.
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[Y’O7] Algebraic designs and LDCs

Lemma 2: dg = q(p, S) < p s.t.
(p, S)-design with k vectors in F}"
= g-query LDCs mapping k bits to p™ bits.

q(p, S) - algebraic niceness of S C IF}.

Definition: S is g-algebraically nice if

1 a ¢-sparse polynomial h(x) € Faolz|/(xP — 1) s.t.

ideal generated by {h(z?)|8 € S} is non-trivial.

(One of two equivalent definitions)
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[Y’O7] Algebraic designs and LDCs

Lemma 2: dg = q(p, S) < p s.t.
(p, S)-design with k vectors in F}"
= g-query LDCs mapping k bits to p™ bits.

q(p, S) - algebraic niceness of S C IF}.

Example: p =127; S = {1,2,4,8,16, 32,64}
S is 3-algebraically nice

m" long (p, S)-designs exist!

= 3-query LDC mapping k bits to exp(k!/7) bits
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[Y’O7] Algebraic designs and LDCs

Lemma 2: dg = q(p, S) < p s.t.
(p, S)-design with k vectors in F}"
= g-query LDCs mapping k bits to p™ bits.

q(p, S) - algebraic niceness of S C IF}.

Lemma 3: p=2'—1= 5 =1{1,2,4,...,2t71}
is 3-algebraically nice.

Lemma 4: S multiplicative subgroup of [,
= 3 (p, S)-design of length ~ m/!°l.

Theorem: 4 3-query LDC
mapping k bits to exp(k-0000001) bits,
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Proofs?

= Disclaimer: Proof of Lemma 2, Lemma 3 too long
to fit here. (Many context switches, but

elementary.)

= Will only attempt to show Lemmas 1 and 4.
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Basic designs and LDCs
Given ui,...,Ug;V1,..., Uk

G=| - lp.a
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Basic designs and LDCs

Lo, o)

Report parity of locations

December 17, 2007
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Basic designs and LDCs

ith row . 7
_’ p— !

- all ones. 2733>

other rows L : i

- p — 1 ones.
. . . -y codeword

December 17, 2007 Coding & Sublinear time 32



Proof of Lemma 4

= Construction of Basic p-designs:

1 <> set of size exactly p — 1
u; = characteristic vector of set 7.

v; = characteristic vector of complement of set 7.

<uiavi> :Oa <uiavj> — ’Zﬂj| S {177p_1}

= Construction of (p,S)-designs for S multiplicative:

Take u;,v; as above;
Use u;,v; = p/|S|th tensor powers of u;, v;.
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Conclusions

= Local algorithms in error-detection/correction
lead to interesting new questions.

= Non-trivial progress so far.

= Limits largely unknown

m O(1)-query LDCs must have R(C) = 0 [Katz-
Trevisan|]
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