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Algorithmic Problems in Coding TheoryAlgorithmic Problems in Coding Theory
Code: Code: 

Encoding:Encoding:

ErrorError--detection (  Testing):detection (  Testing):

ErrorError--correction (Decoding):correction (Decoding):

Fix Code C and associated E : Σk → Σn.
Given m ∈ Σk, compute E(m).

Given x ∈ Σn, decide if ∃m ∈ Σk s.t. x = E(m).
Given x ∈ Σn, decide if ∃m ∈ Σk s.t. δ(E(m), x) ≤ ².

²-

Given x ∈ Σn, compute m ∈ Σk that minimizes
δ(E(m), x) (provided δ(E(m), x) ≤ ²).

E : Σk → Σn; Image(E) = C ⊆ Σn;
R(C) = k/n, δ(C) =normalized distance.
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SublinearSublinear time time algorithmicsalgorithmics

Given                                can it be Given                                can it be ““computedcomputed””
in            time?in            time?

Answer 1: Clearly NO, since that is the time it Answer 1: Clearly NO, since that is the time it 
takes to even read the input/write the outputtakes to even read the input/write the output

f : {0, 1}k → {0, 1}n
o(k, n)

fx f(x)

Answer 2: YES, if we are willing to Answer 2: YES, if we are willing to 
1.1. Present input implicitly (by an oracle). Present input implicitly (by an oracle). 
2.2. Represent output implicitlyRepresent output implicitly
3.3. Compute  function on approximation to input.Compute  function on approximation to input.

Extends to computing relations as well.Extends to computing relations as well.

x-oracle

j

xj
f(x)i

i

f(x0)i
where x0 ≈ x
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SubSub--linear time algorithmslinear time algorithms

Initiated in late eighties in context ofInitiated in late eighties in context of
Program checkingProgram checking
Interactive Proofs/PCPsInteractive Proofs/PCPs

Now successful in many more contextsNow successful in many more contexts
Property testing/GraphProperty testing/Graph--theoretic algorithmstheoretic algorithms
Sorting/SearchingSorting/Searching
Statistics/Entropy computationsStatistics/Entropy computations
(High(High--dim.) Computational geometry dim.) Computational geometry 

Many initial results are codingMany initial results are coding--theoretic!theoretic!



December 17, 2007December 17, 2007 Coding & Sublinear timeCoding & Sublinear time 55

SubSub--linear time algorithms & Codinglinear time algorithms & Coding

Encoding: Not reasonable to expect in subEncoding: Not reasonable to expect in sub--linear linear 
time.time.

Testing? Decoding? Testing? Decoding? –– Can be done in Can be done in sublinearsublinear
time.time.

In fact many initial results do so!In fact many initial results do so!

Codes that admit efficient Codes that admit efficient ……
…… testing: Locally Testable Codes (testing: Locally Testable Codes (LTCsLTCs))
…… decoding: Locally Decodable Codes (decoding: Locally Decodable Codes (LDCsLDCs).).
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Rest of this talkRest of this talk

Definitions of Definitions of LDCsLDCs and and LTCsLTCs
Quick description of known resultsQuick description of known results
Some basic constructionsSome basic constructions
(Time permitting) (Time permitting) YekhaninYekhanin’’ss construction of construction of 
LDCsLDCs..



December 17, 2007December 17, 2007 Coding & Sublinear timeCoding & Sublinear time 77

DefinitionsDefinitions
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Locally Decodable Code

Code:

n

w

What if ² > δ(C)/2? Might need to
report a list of upto ` codewords.

D(i) reads q(n) random positions of w
and outputs mi w.p. at least 2/3.

C : Σk → Σn is (q, ²)-Locally Decodable
if ∃ Decoder D s.t. given i ∈ [k]
and oracle w s.t. ∃ m δ(w,C(m)) ≤ ² ≤ δ(C)/2,
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Locally List-Decodable Code

Code:

n

w

C is (², `)-list-decodable if ∀w ∈ Σn,
# codewords c ∈ C s.t. δ(w, c) ≤ ² is at most `.

C is (q, ², `)-locally list-decodable if ∃ Decoder D s.t.
given i ∈ [k] and j ∈ [`] and oracle w s.t.
m1, . . . ,m` are all messages satisfying δ(w,C(mj)) ≤ ²

D(i, j) reads q(n) random positions of w
and outputs (mj)i w.p. at least 2/3.
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History of definitionsHistory of definitions

Constructions predate formal definitionsConstructions predate formal definitions
[[GoldreichGoldreich--Levin Levin ’’89].89].
[Beaver[Beaver--FeigenbaumFeigenbaum ’’90, Lipton 90, Lipton ’’91].91].
[Blum[Blum--LubyLuby--RubinfeldRubinfeld ’’90].90].

Hints at definition (in particular, interpretation in Hints at definition (in particular, interpretation in 
the context of errorthe context of error--correcting codes): [correcting codes): [BabaiBabai--
FortnowFortnow--LevinLevin--SzegedySzegedy ’’91].91].
Formal definitionsFormal definitions

[S.[S.--TrevisanTrevisan--VadhanVadhan ’’99] (local list99] (local list--decoding).decoding).
[Katz[Katz--TrevisanTrevisan ’’00] 00] 
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Locally Testable Codes

Code:

n

w

“Weak” definition: hinted at in [BFLS], explicit in 
[RS’96, Arora’94, Spielman’94, FS’95].

T reads q(n) random positions:
• If w ∈ C accepts w.p. 1.
• If w is ²-far from C, then rejects w.p. ≥ 1/2.

C ⊆ Σn is (q, ²)-Locally Testable
if ∃ Tester T s.t.
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Strong Locally Testable Codes

Code:

n

w

“Strong” Definition: [Goldreich-S. ’02]

C ⊆ Σn is (q, ²)-Locally Testable
if ∃ Tester T s.t.

T reads q(n) random positions:
• If w ∈ C accepts w.p. 1.
• For every w ∈ Σn,
T rejects w.p. ≥ Ω(δ(w,C)).
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MotivationsMotivations
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Motivations for Local decodingMotivations for Local decoding
• Suppose C ⊆ ΣN is locally-decodable code for N = 2n.
(Further assume can locally decode bits of the codeword,
and not just bits of the message.)

• c ∈ C can be viewed as function c : {0, 1}n → Σ.

• Local decoding ≈⇒ can compute c(x) for every x, if
one can compute c(x0) for most x0. Relates average-
case complexity to worst-case. [Lipton, STV]

• Alternate interpretation: Compute c(x) without re-
vealing x. Leads to Instance Hiding [BF], Private
Information Retrieval [CGKS].
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Motivation for LocalMotivation for Local--testingtesting

No generic applications known.No generic applications known.
However, However, 

Interesting phenomenon on its own.Interesting phenomenon on its own.
Intangible connection to Probabilistically Intangible connection to Probabilistically 
Checkable Proofs (PCPs).Checkable Proofs (PCPs).
Potentially good approach to understanding Potentially good approach to understanding 
limitations of PCPs (though all resulting work limitations of PCPs (though all resulting work 
has led to improvements).has led to improvements).
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Contrast between decoding and testingContrast between decoding and testing

Decoding:Decoding: Property of words near Property of words near codewordscodewords..
Testing:Testing: Property of words far from code.Property of words far from code.

Decoding:Decoding:
Motivations happy with n = quasiMotivations happy with n = quasi--poly(kpoly(k), and ), and 
q = poly log n. q = poly log n. 
Lower bounds show q = O(1) and n = nearlyLower bounds show q = O(1) and n = nearly--
linear(klinear(k) impossible.) impossible.

Testing:Testing: Better tradeoffs possible! Likely more Better tradeoffs possible! Likely more 
useful in practice.useful in practice.

Even conceivable: n = Even conceivable: n = O(kO(k) with q = O(1)?) with q = O(1)?
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Some Some LDCsLDCs and and LTCsLTCs
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Codes via Multivariate Polynomials

Message:

Encoding:

Parameters:

(Reed Muller code)

coefficients of deg t, m-variate polynomial P
over finite field F

P
F

Fm
evaluations of P on all of Fm.
k ≈ (t/m)m, n = |F|m, δ ≥ t/|F|.
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Basic insight to localityBasic insight to locality

Local Decoding:Local Decoding:

Local Testing:Local Testing:

m-variate polynomial of degree t restricted to
m0 < m-dim. (affine) subspace is polynomial
of degree t.

Verify f restricted to space is of degree t.
Same complexity.

Pick subspace through point x of interest,
and decode on subspace.

Query complexity q = |F|m0
; Time = poly(q).

m0 ¿ m⇒ sublinear!
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Summary of ConstructionsSummary of Constructions

Polynomial Codes: Polynomial Codes: (Locally decodable and testable)(Locally decodable and testable)

Polynomial Codes + Composition/Concatenation:Polynomial Codes + Composition/Concatenation:

Codes based on Codes based on ““Algebraic DesignsAlgebraic Designs”” [[YekhaninYekhanin]]

Local Testability with
q = O(1) and n = Õ(k) = k · (log k)c.

Local Decodability with n = exp(k1/poly(q))

Locality q with n = exp(k1/(q−1))

Local Decodability with q = 3 and n = exp(k²)
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[[YekhaninYekhanin ’’07]07]’’s s LDCsLDCs
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Recall: Combinatorial DesignsRecall: Combinatorial Designs

Families of Sets:Families of Sets:

Restrictions on Intersections:Restrictions on Intersections:
E.g.,  E.g.,  

Basic Question:Basic Question:

How large can k be?

S1, . . . , Sk, T1, . . . , Tk.
Si, Ti ⊆ {1, . . . ,m}.

(As a function of m?)

|Si ∩ Ti| even.
|Si ∩ Tj | odd.

(Large)

(Small)

(Small)

(Large)

i vs. i:

i vs. j:

Typical answer k = Θ(m)
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[[Yekhanin]Yekhanin]’’ss Algebraic DesignsAlgebraic Designs

Families of Vectors:Families of Vectors:

Restrictions on Inner Products:Restrictions on Inner Products:

Basic Question:Basic Question: How large can k be?

u1, . . . , uk, v1, . . . , vk.
ui, vi ∈ Fmp .
p small prime

hui, vii = 0
hui, vji 6= 0 hui, vji ∈ S 63 0

hui, vii = 0

(p, S)-designBasic p-design

¡
m
p−1
¢
∼ mp−1 At most m|S|!

Can we achieve it?
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[[Yekhanin]Yekhanin]’’ss Algebraic DesignsAlgebraic Designs

Families of Vectors:Families of Vectors:

Restrictions on Inner Products:Restrictions on Inner Products:

Basic Question:Basic Question: How large can k be?

u1, . . . , uk, v1, . . . , vk.
ui, vi ∈ Fmp .
p small prime

hui, vii = 0
hui, vji 6= 0 hui, vji ∈ S 63 0

hui, vii = 0

(p, S)-designBasic p-design

¡
m
p−1
¢
∼ mp−1 At most m|S|!

Can we achieve it?
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[Y[Y’’07] Algebraic designs and 07] Algebraic designs and LDCsLDCs

k = mp−1 ⇒ n = exp(k1/p−1)

(Matches some of the early constructions)

Lemma 1: Basic p-design with k vectors in Fmp
⇒ p-query (binary) LDCs mapping k-bits to pm bits

Lemma 2: ∃q = q(p, S) ≤ p s.t.
(p, S)-design with k vectors in Fmp
⇒ q-query LDCs mapping k bits to pm bits.

q(p, S) - Algebraic niceness of S ⊆ F∗p.
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[Y[Y’’07] Algebraic designs and 07] Algebraic designs and LDCsLDCs

Lemma 2: ∃q = q(p, S) ≤ p s.t.
(p, S)-design with k vectors in Fmp
⇒ q-query LDCs mapping k bits to pm bits.

q(p, S) - algebraic niceness of S ⊆ F∗p.

(One of two equivalent definitions)

Definition: S is q-algebraically nice if
∃ a q-sparse polynomial h(x) ∈ F2[x]/(xp − 1) s.t.
ideal generated by {h(xβ)|β ∈ S} is non-trivial.
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[Y[Y’’07] Algebraic designs and 07] Algebraic designs and LDCsLDCs

Lemma 2: ∃q = q(p, S) ≤ p s.t.
(p, S)-design with k vectors in Fmp
⇒ q-query LDCs mapping k bits to pm bits.

q(p, S) - algebraic niceness of S ⊆ F∗p.

Example: p = 127; S = {1, 2, 4, 8, 16, 32, 64}
S is 3-algebraically nice

⇒ 3-query LDC mapping k bits to exp(k1/7) bits

m7 long (p, S)-designs exist!
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[Y[Y’’07] Algebraic designs and 07] Algebraic designs and LDCsLDCs

Lemma 2: ∃q = q(p, S) ≤ p s.t.
(p, S)-design with k vectors in Fmp
⇒ q-query LDCs mapping k bits to pm bits.

q(p, S) - algebraic niceness of S ⊆ F∗p.

Lemma 3: p = 2t − 1 ⇒ S = {1, 2, 4, . . . , 2t−1}
is 3-algebraically nice.

Lemma 4: S multiplicative subgroup of Fp
⇒ ∃ (p, S)-design of length ∼ m|S|.

Theorem: ∃ 3-query LDC
mapping k bits to exp(k0.0000001) bits.
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Proofs?Proofs?

Disclaimer: Proof of Lemma 2, Lemma 3 too long Disclaimer: Proof of Lemma 2, Lemma 3 too long 
to fit here. (Many context switches, but to fit here. (Many context switches, but 
elementary.)elementary.)

Will only attempt to show Lemmas 1 and 4.Will only attempt to show Lemmas 1 and 4.
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Basic designs and Basic designs and LDCsLDCs

ui

x

Given u1, . . . , uk; v1, . . . , vk

G =

⎡⎢⎢⎣
...

· · · 1hui,xi · · ·
...

⎤⎥⎥⎦
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Basic designs and Basic designs and LDCsLDCs⎡⎢⎢⎣
...

· · · 1hui,xi · · ·
...

⎤⎥⎥⎦
m1, . . . ,mk

…
y

s.t. hui, yi 6= 0
y + vi

y + 2vi y+(p−1)vi…

message

Report parity of       locations

codeword
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Basic designs and Basic designs and LDCsLDCs⎡⎢⎢⎣
...

· · · 1hui,xi · · ·
...

⎤⎥⎥⎦
… codeword

+++ =

⎡⎢⎢⎣
...
?
...

⎤⎥⎥⎦ith row
- all ones.

other rows
- p− 1 ones.
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Proof of Lemma 4Proof of Lemma 4

Construction of Basic pConstruction of Basic p--designs:designs:

Construction of (Construction of (p,Sp,S))--designs for S multiplicative:designs for S multiplicative:

ui = characteristic vector of set i.

i↔ set of size exactly p− 1

vi = characteristic vector of complement of set i.

hui, vii = 0; hui, vji = |i ∩ j| ∈ {1, . . . , p− 1}

Take ui, vi as above;

Use ũi, ṽi = p/|S|th tensor powers of ui, vi.
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ConclusionsConclusions

Local algorithms in errorLocal algorithms in error--detection/correction detection/correction 
lead to interesting new questions.lead to interesting new questions.

NonNon--trivial progress so far.trivial progress so far.

Limits largely unknownLimits largely unknown
O(1)O(1)--query query LDCsLDCs must have R(C) must have R(C) = 0 [Katz= 0 [Katz--
TrevisanTrevisan]]
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