Invariance in Property Testing

Madhu Sudan MIT

Joint work with Tali Kaufman (IAS).

Dec. 31, 2007

Property Testing

 Goal: "Efficiently" determine if some "data" "essentially" satisfies some given "property".

• Formalism:

- Data: $f: D \to R$ given as oracle D finite, but huge. R finite, possibly small
- Property: Given by $\mathcal{F} \subseteq \{f : D \to R\}$
- Efficiently: o(D) queries into f. Even O(1)!
- Essentially: Must accept if $f \in \mathcal{F}$ Ok to accept if $f \approx g \in \mathcal{F}$.

Property Testing

Distance:
$$\delta(f,g) = \Pr_{x \in D}[f(x) \neq g(x)]$$

 $\delta(f, \mathcal{F}) = \min_{g \in \mathcal{F}} \{\delta(f,g)\}$
 $f \approx_{\epsilon} g \text{ if } \delta(f,g) \leq \epsilon.$

Definition:
 \$\mathcal{F}\$ is \$(q, \alpha)\$-locally testable if
 \$\frac{1}{2}\$ a q-query tester that
 \$accepts \$f \in \mathcal{F}\$ with probability one
 \$rejects \$f \not \mathcal{F}\$ with probability \$\geq \alpha \cdot \delta(f, \mathcal{F})\$.

 Notes: q-locally testable implies ∃α > 0 locally testable implies ∃q = O(1) Weaker testing: can reject f ∈ F with small prob.

Dec. 31, 2007

Property Testing (Pictorially)

 $\checkmark \begin{array}{l} \text{Universe} \\ \{f: D \to R\} \end{array}$

Must accept Ok to accept

Must reject w.h.p.

Dec. 31, 2007

Example: Pre-election Polling

- Domain = Population Range = $\{0, 1\}$
- Property: $\mathcal{F} =$ functions with majority 1
- Essentially: Must reject w.h.p. if $\Pr_{x \in D}[f(x) = 1] \le 1/2 - \epsilon$
- Efficiency? Can test weakly with $\tilde{O}(1/\epsilon^2)$ queries. Chernoff bounds.

Modern Day Example: Testing Linearity

- Domain = Vector space \mathbb{F}_2^n Range = Field \mathbb{F}_2
- Property: *F* = linear functions i.e., {*f*(*x*) = ⟨*a*, *x*⟩|*a* ∈ 𝔽ⁿ₂}
 Theorem [Blum,Luby,Rubinfeld '89]: Linearity is 3-locally testable.
- Test: Pick $x, y \in \mathbb{F}_2^n$ uniformly. Accept iff f(x) + f(y) = f(x+y)

Property Testing: Abbreviated History

Prehistoric: Statistical sampling

E.g., "Majority = 1?"

- Linearity Testing [BLR'90], Multilinearity Testing [Babai, Fortnow, Lund '91].
- Graph/Combinatorial Property Testing [Goldreich, Goldwasser, Ron '94].

• E.g., Is a graph "close" to being 3-colorable.

- Algebraic Testing [GLRSW,RS,FS,AKKLR,KR,JPSZ]
 - Is multivariate function a polynomial (of bounded degree).
- Graph Testing [Alon-Shapira, AFNS, Borgs et al.]
 - Characterizes graph properties that are testable.

Quest for this talk

What makes a property testable?

In particular for algebraic properties:

- Current understanding:
 - Low-degree multivariate functions are testable.
 - Different proofs for different cases.
 - Linear functions
 - Low-degree polynomials
 - Higher degree polynomials over \mathbb{F}_2
 - Higher degree polynomials over other fields

Necessary Conditions for Testability

One-sided error and testability:

Suppose f is rejected by a k-query 1-sided tester. Suppose queried points are x₁,..., x_k ∈ D. Let (x_i) = α_i.
Then for every function g ∈ F, ⟨g(x₁),...,b(x_k)⟩ ≠ ⟨α₁,...,α_k⟩.
Constraint: C = ⟨x₁,...,x_k⟩; S ⊊ R^k g satisfies C if ⟨g(x₁),...,g(x_k)⟩ ∈ S F satisfies C if every q ∈ F satisfies C.

Conclusion: Testability implies Constraints.

Dec. 31, 2007

Necessary Conditions for Testability

One-sided error and testability:

Suppose f is rejected by a k-query 1-sided tester. Suppose queried points are x₁,..., x_k ∈ D. Let (x_i) = α_i.
Then for every function g ∈ F, ⟨g(x₁),...,b(x_k)⟩ ≠ ⟨α₁,...,α_k⟩.
Constraint: C = ⟨x₁,...,x_k⟩; S ⊊ R^k g satisfies C if ⟨g(x₁),...,g(x_k)⟩ ∈ S F satisfies C if every q ∈ F satisfies C.

Conclusion: Testability implies Constraints.

Dec. 31, 2007

Constraints, Characterizations, Testing

Strong testing: Every $f \notin \mathcal{F}$ rejected by some k-local constraint. Set of k-local constraints characterize \mathcal{F} . $\exists C_1, \ldots, C_m$ s.t. $f \in \mathcal{F} \Leftrightarrow f$ satisfies C_j for every j.

- Conclusion: Testability implies Local Characterizations.
- Example:

$$f \subseteq \{\mathbb{F}_2^n \to \mathbb{F}_2\} \text{ is linear iff}$$

for all $x, y \in \mathbb{F}_2^n$, f satisfies $C_{x,y}$ where
 $C_{x,y} = \langle x, y, x + y \rangle; S = \{000, 011, 101, 110\}.$

Characterizations Sufficient?

NO! [Ben-Sasson, Harsha, Raskhodnikova]

- Random 3-locally characterized errorcorrecting codes ("Expander Codes") are not o(D)-locally testable.
 - Property:

 $D = [n]; R = \{0, 1\};$

 $\mathcal{F} = \text{set of functions that satisfy some}$ random 3-ary \mathbb{F}_2 -linear constraints.

Criticism: Random constraints too "asymmetric".
 Perhaps should consider more "symmetric"

properties.

Dec. 31, 2007

Invariance & Property testing

Invariances (Automorphism groups):

For permutation $\pi: D \to D$, \mathcal{F} is π -invariant if $f \in \mathcal{F}$ implies $f \circ \pi \in \mathcal{F}$. Aut $(\mathcal{F}) = \{\pi \mid \mathcal{F} \text{ is } \pi\text{-invariant}\}$ Forms group under composition.

 Hope: If Automorphism group is "large" ("nice"), then property is testable.

Examples

Majority:

- Aut group = S_D (full group).
- Easy Fact: If $\operatorname{Aut}(\mathcal{F}) = S_D$ then
 - \mathcal{F} is poly $(R, 1/\epsilon)$ -locally testable.
- Graph Properties:
 - Aut. group given by renaming of vertices
 - [AFNS, Borgs et al.] implies *regular* graph properties testable.
- Matrix Properties: Have lots of symmetries do they suffice?
- Algebraic Properties: What symmetries do they have? Will focus on this today.

Algebraic Properties & Invariances

Properties:

 $D = \mathbb{F}^n, R = \mathbb{F}$ (Linearity, Low-degree, Reed-Muller)

Or $D = \mathbb{K} \supseteq \mathbb{F}$, $R = \mathbb{F}$ (Dual-BCH) (\mathbb{K}, \mathbb{F} finite fields)

- Automorphism groups?
 - Linear transformations of domain.
 - $\pi(x) = Ax$ where $A \in \mathbb{F}^{n \times n}$ (Linear-Invariant)
- Additional restriction: Linearity
 - $f,g \in \mathcal{F} \text{ and } \alpha, \beta \in \mathbb{F} \text{ implies } \alpha f + \beta g \in \mathcal{F}$
- Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable?

Dec. 31, 2007

Linear-Invariance & Testability

- Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable?
 - Why?
 - Unifies previous results on Prop. Testing.
 - (Will show it also is non-trivial extension)
 - Nice family of 2-transitive group of symmetries.
 - Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k-local constraint and 2transitive group of symmetries must be testable.

Our Results

Theorem 1: *F* ⊆ {Kⁿ → F} linear, linear-invariant, *k*-locally characterized implies *F* is *f*(K, *k*)-locally testable.
Theorem 2: *F* ⊆ {Kⁿ → F} linear, affine-invariant, has *k*-local constraint implies *F* is *f*(K, *k*)-locally testable.

Other stuff: Study of Linear-invariant Properties.

Linear Invariant Properties

Examples of Linear-Invariant Families

- Polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ of degree at most d
- Traces of Poly in $\mathbb{K}[x_1, \ldots, x_n]$ of degree at most d
- (Traces of) Homogenous polynomials of degree d
- $-\mathcal{F}_1 + \mathcal{F}_2$, where \mathcal{F}_1 , \mathcal{F}_2 are linear-invariant. Polynomials supported by degree 2, 3, 5, 7 monomials.

What Dictates Locality of Characterizations?

- Precise locality not yet understood:
 Depends on *p*-ary representation of degrees.
 Example: *F* supported by monomials $x^{p^i+p^j}$ behaves like degree two polynomial
- For affine-invariant family dictated (coarsely)
 by highest degree monomial in family
- For some linear-invariant families, can be *much* less than the highest degree monomial. Example: $\mathbb{K} = \mathbb{F} = \mathbb{F}_7$; $\mathcal{F} = \mathcal{F}_1 + \mathcal{F}_2$ $\mathcal{F}_1 = \text{poly of degree at most 16}$ $\mathcal{F}_2 = \text{poly supported on monomials of degree 3 mod 6.}$ $\text{Degree}(\mathcal{F}) = \Omega(n)$; $\text{Locality}(\mathcal{F}) \leq 49.$

Analysis Ingredients

Monomial Extraction:

E.g., $xy^2 + xyz + x^4 \in \mathcal{F}$ implies $xyz \in \mathcal{F}$

Monomial Spread:

 $x^5 \in \mathcal{F}$ implies x^4y, x^3y^2 also in \mathcal{F} (if char(\mathbb{F}) large)

Suffices for affine-invariant families. For linear-invariant families, need to define the right parameter and bound locality weakly in terms of it.

Local Testing

Key Notion: Formal Characterization

- \mathcal{F} is formally characterized if $\exists a single constraint C = (\langle x_1, \dots, x_k \rangle, S)$ such that $\{C \circ \pi\}_{\pi \in \operatorname{Aut}(\mathcal{F})}$ characterize \mathcal{F} .

Theorem: If \mathcal{F} is formally characterized by a k-local constraint (with some restrictions) then it is k-locally testable.

BLR (and our) analysis

Dec. 31, 2007

BLR Analysis: Outline

- Have f s.t. $\Pr_{x,y}[f(x) + f(y) \neq f(x+y)] = \delta < 1/20.$ Want to show f close to some $g \in \mathcal{F}$.
- Define $g(x) = \text{most likely}_y \{ f(x+y) f(y) \}.$
- If f close to \mathcal{F} then g will be in \mathcal{F} and close to f.
- But if f not close? g may not even be uniquely defined!
- Steps:
 - Step 0: Prove f close to g
 - Step 1: Prove most likely is overwhelming majority.
 - Step 2: Prove that g is in \mathcal{F} .

BLR Analysis: Step 0

• Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$

Claim: $\Pr_x[f(x) \neq g(x)] \le 2\delta$

- Let $B = \{x | \Pr_y[f(x) \neq f(x+y)f(y)] \ge \frac{1}{2}\}$

 $-\Pr_{x,y}[\text{linearity test rejects } | x \in B] \ge \frac{1}{2}$ $\Rightarrow \Pr_x[x \in B] \le 2\delta$

 $- \text{ If } x \notin B \text{ then } f(x) = g(x)$

Dec. 31, 2007

BLR Analysis: Step 1

• Define $g(x) = \text{most likely }_{y} \{ f(x+y) - f(y) \}.$

- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.

Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$

 $Vote_{x}(y)$

$Vote_x(y)$

BLR Analysis: Step 1

- Define $g(x) = \text{most likely }_{y} \{ f(x+y) f(y) \}.$
- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.
- Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_x(y) \neq \operatorname{Vote}_x(z))] \leq 4\delta$

BLR Analysis: Step 1Vote_x(y)• Define $g(x) = \text{most likely }_{y} \{f(x+y) - f(y)\}.$ Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z))] \leq 4\delta$

?
$$f(y)$$
 $-f(x+y)$ $f(z)$ $f(y+z)$ $-f(y+2z)$ $-f(x+z)$ $-f(2y+z)$ $f(x+2y+2z)$ Prob. Row/column
sum non-zero $\leq \delta$. $f(x+2y+2z)$

Dec. 31, 2007

BLR Analysis: Step 1Vote_x(y)• Define $g(x) = \text{most likely }_{y} \{f(x+y) - f(y)\}.$ Lemma: $\forall x, \Pr_{y,z}[\operatorname{Vote}_{x}(y) \neq \operatorname{Vote}_{x}(z))] \leq 4\delta$

?
$$f(y)$$
 $-f(x+y)$ $f(z)$ $f(y+z)$ $-f(y+2z)$ $-f(x+z)$ $-f(2y+z)$ $f(x+2y+2z)$ Prob. Row/column
sum non-zero $\leq \delta$. $f(x+2y+2z)$

Dec. 31, 2007

BLR Analysis: Step 2 (Similar) Lemma: If $\delta < \frac{1}{20}$, then $\forall x, y, g(x) + g(y) = g(x + y)$

Our Analysis: Outline

•
$$f$$
 s.t. $\Pr_L[\langle f(L(x_1), \ldots, f(L(x_k))) \rangle \in V] = \delta \ll 1.$

• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

• Steps:

- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F} .

Our Analysis: Outline

•
$$f$$
 s.t. $\Pr_L[\langle f(L(x_1), \ldots, f(L(x_k))) \rangle \in V] = \delta \ll 1.$

• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

Same as before

• Steps:

- Step 0: Prove f close to g
- Step 1: Prove "most likely" is overwhelming majority.
- Step 2: Prove that g is in \mathcal{F} .

Dec. 31, 2007

$\operatorname{Vote}_{x}(L)$

Matrix Magic?

• Define $g(x) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=x\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

Lemma: $\forall x, \Pr_{L,K}[\operatorname{Vote}_x(L) \neq \operatorname{Vote}_x(K))] \leq 2(k-1)\delta$

Dec. 31, 2007

Matrix Magic?

- Want marked rows to be random constraints.
- Suppose x_1, \ldots, x_ℓ linearly independent; and rest dependent on them.

Conclusions

- Linear/Affine-invariant properties testable if they have local constraints.
- Gives clean generalization of linearity and lowdegree tests.
- Future work: What kind of invariances lead to testability (from characterizations)?