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s Goal: “Efficiently” determine if some “data”
“essentially” satisfies some given “property”.

s Formalism:
m Data: f : D — R given as oracle

D finite, but huge. R finite, possibly small
m Property: Given by F C {f: D — R}
m Efficiently: o(D) queries into f. Even O(1)!

s Essentially: Must accept if f € F
Ok to accept if f =~ g € F.
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= Distance: 4(f,g) = Pryep|f(z) # g(z)]
0(f, F) = minge #{4(f,9)}
f~.gif 6(f,g) <e.

= Definition:

F is (q, a)-locally testable if
J a g-query tester that

accepts f € F with probability one
rejects f ¢ F with probability > « - 6(f, F).

= Notes: g-locally testable implies da > 0
locally testable implies g = O(1)
Weaker testing: can reject f € F with small prob.
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Property Testing (Pictorially)

Universe

{f:D— R}

Must accept
Ok to accept

Must reject w.h.p.
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= Domain = Population
Range = 10,1}

s Property: F = functions with majority 1

s Essentially:
Must reject w.h.p. if Pryoep|f(z) =1] <1/2 —¢

= Efficiency? Can test weakly with O(1/€?) queries.
Chernoft bounds.
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= Domain = Vector space [y
Range = Field 5

= Property: F = linear functions

ie., {f(z) = (a,z)[a € F3}
= Theorem [Blum,Luby,Rubinfeld '89]-:
Linearity is 3-locally testable.

s Test: Pick z,y € F} uniformly.
Accept iftf f(x) + f(y) = f(z +y)
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= Prehistoric: Statistical sampling
m E.g., “Majority = 17?7

= Linearity Testing [BLR’90], Multilinearity Testing
[Babai, Fortnow, Lund ’91].

= Graph/Combinatorial Property Testing [Goldreich,
Goldwasser, Ron '94].

m E.g., Is a graph “close” to being 3-colorable.
s Algebraic Testing [GLRSW,RS,FS,AKKLR,KR,JPSZ]
s Is multivariate function a polynomial (of bounded
degree).
s Graph Testing [Alon-Shapira, AFNS, Borgs et al.]
s Characterizes graph properties that are testable.
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= What makes a property testable?

= In particular for algebraic properties:
s Current understanding:

= Low-degree multivariate functions are
testable.

= Different proofs for different cases.
= Linear functions
m Low-degree polynomials
= Higher degree polynomials over [y
m Higher degree polynomials over other fields
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= One-sided error and testability:
— Suppose f is rejected by a k-query 1-sided tester.
Suppose queried points are x1,...,x € D.
Let (x;) = ;.
— Then for every function g € F,
<g(:171), SR’ b(xk» # <041, SR’ ak>'
= Constraint: C = (z1,...,71); S C RF
g satisfies C' if (g(x1),...,9(xx)) € S
F satisfies C if every g € F satisfies C.

s Conclusion: Testability implies Constraints.
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= Strong testing:
Every f &€ F rejected by some k-local constraint.

Set of k-local constraints characterize F.
3Ch, ..., Cn s.t. f € F & f satisfies C; for every j.

s Conclusion: Testability implies Local
Characterizations.

= Example:
f C{FY — Fy} is linear iff
for all z,y € Iy, f satisfies C , where
Cry=(z,y,2+y); S ={000,011,101,110}.
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= NO! [Ben-Sasson, Harsha, Raskhodnikova]

s Random 3-locally characterized error-
correcting codes (“Expander Codes”) are not
o(D)-locally testable.

= Property:
D = [n]; R={0,1};
F = set of tunctions that satisty some
random 3-ary [fo-linear constraints.

= Criticism: Random constraints too “asymmetric”.

= Perhaps should consider more “symmetric”
properties.

Dec. 31, 2007 Invariance in Property Testing 12



= Invariances (Automorphism groups):

For permutation 7 : D — D, F is w-invariant if
f € F implies fom € F.

Aut(F) = {x | F is m-invariant }

Forms group under composition.

= Hope: If Automorphism group is “large” (“nice”),
then property is testable.
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= Majority:
— Aut group = Sp (full group).
— Easy Fact: If Aut(F) = Sp then
F is poly (R, 1/€)-locally testable.
= Graph Properties:
— Aut. group given by renaming of vertices
— [AFNS, Borgs et al.] implies reqular graph
properties testable.

= Matrix Properties: Have lots of symmetries — do
they suffice?

= Algebraic Properties: What symmetries do they
have? Will focus on this today.
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= Properties:
D =TF", R =TF (Linearity, Low-degree, Reed-Muller)

Or D=KDOF, R=F (Dual-BCH) (K,F finite fields)
= Automorphism groups?

Linear transtformations of domain.
m(x) = Ax where A € F**™ (Linear-Invariant)

= Additional restriction: Linearity
f,g € F and o, B € F implies af + Bg € F

= Question: Are Linear, Linear-Invariant, Locally
Characterized Properties Testable?
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= Question: Are Linear, Linear-Invariant, Locally
Characterized Properties Testable?

s Why?
= Unifies previous results on Prop. Testing.
= (Will show It also Is non-trivial extension)

= Nice family of 2-transitive group of
symmetries.

O Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] :

Linear code with k-local constraint and 2-
transitive group of symmetries must be
testable.
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= Theorem 1: F C {K" — I} linear, linear-invariant,
k-locally characterized
implies F is f(K, k)-locally testable.

= Theorem 2: F C {K™ — F} linear, affine-invariant,
has k-local constraint
implies F is f(K, k)-locally testable.

= Other stuff: Study of Linear-invariant Properties.
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Linear Invariant Properties
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— Polynomials in F|zq,...,z,] of degree at most d

— Traces of Poly in K|z, ..., z,] of degree at most d
— (Traces of) Homogenous polynomials of degree d

— F1 + Fo, where F;1, F5 are linear-invariant.
Polynomials supported by degree 2, 3,5, 7 monomials.
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— Precise locality not yet understood:
Depends on p-ary representation of degrees
Example: JF supported by monomials zP' TP’
behaves like degree two polynomial

— For affine-invariant family dictated (coarsely)
by highest degree monomial in family

— For some linear-invariant families,

can be much less than the highest degree monomial.
Example: K=F =F,; F = F; + F»

JF1 = poly of degree at most 16

Fo = poly supported on monomials of degree 3 mod 6.

Degree(F) = Q(n); Locality(F) < 49.
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= Monomial Extraction:
E.g., zy? + zyz + 2* € F implies zyz € F
= Monomial Spread:-
r° € F implies z*y, z°y? also in F (if char(IF) large)
Suffices for affine-invariant families.
For linear-invariant families, need to define

the right parameter and bound locality
weakly in terms of it.
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— F is formally characterized if
1 a single constraint C' = ((x1,...,xk),S) such that
{C o7} ecaut(r) characterize F.

Theorem: If F is formally characterized by
a k-local constraint (with some restrictions)
then it is k-locally testable.
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e Have f s.t. Pr, ,[f(z)+ f(y) # f(z+y)] =0 < 1/20.
Want to show f close to some g € F.

e Define g(x) = most likely, { f(z +y) — f(y)}-
e If f close to F then g will be in F and close to f.

e But if f not close?” g may not even be uniquely defined!

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove most likely is overwhelming majority.

— Step 2: Prove that g is in F.
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e Define g(x) = most likely ,{f(z+y) — f(y)}.

Claim: Pr,|f(z) # g(x)] < 20

— Let B = {z|Pr,[f(z) # f(z +y)f()] > L}

— Pr, [linearity test rejects |z € B] > 2

= Pr,|z € B] <2§

— If £ € B then f(x) = g(x)
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D

e Define g(x) = most likely ,{f(z+y) — f(y)}.

e Suppose for some x, 4 two equally likely values.
Presumably, only one leads to linear x, so which one?

e If we wish to show ¢ linear,
then need to rule out this case.

Lemma: V z, Pr, ,[Vote,(y) # Vote,(z))] < 49
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/-
e Define g(z) = most likely ,{f(z + y)

Lemma: V x, Pry, ,[Vote,(y) # Vote,(z))] < 44

? fly) |—flz+y)

f(2) fly+2) |—fly+ 22)|«—

~fo+ 2) |-y + 2) s 220l

Prob. Row/column I I

sum non-zero < 9.
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Lemma: If § < 4

550 then Vx,y, g(z) +g(y) = g(z +y)

Prob. Row/column

9(z) 9(y) —9(z+y) sum non-zero < 4¢.
f(2) fly+2) |—f(y + 22)|e—
—f(a: e z) _f(zy + z) flz + 2y + 22) |t

Dec. 31,[007 IInvariance in Prop[rty Testing

31



o fst. Prp[(f(L(zy),...,f(L(xk))) e V] =60 < 1.

e Define g(z) = o that maximizes
Pripip@y)=s} (0, [(L(22)), ..., f(L(zy))) € V]

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove “most likely” is overwhelming majority.

— Step 2: Prove that g is in F.
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e Define g(z) = « that
Prir|n(a)=23 (5T (L(22)), -, f(L(zk))) € V]

Lemma: V x, Prp x[Vote, (L) # Vote,(K))] < 2(k — 1)

v |L(z2) a L(zg)
K (xs2)
O
K(zy)
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v |L2) ()
K(Q?Q) M
PY L
K (zx) =

P T

e Want marked rows to be random constraints.

e Suppose I1,..., Iy linearly independent;
and rest dependent on them.



s Fill with random entries

m Fill so as to form constraints

/ s Linear algebra implies final
~ A columns are also constraints.
K (z2) -

K (z) =

1 I.su‘L T

pose 1, ...,Zy linearly independent;
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= Linear/Affine-invariant properties testable if they
have local constraints.

= Gives clean generalization of linearity and low-
degree tests.

= Future work: What kind of invariances lead to
testability (from characterizations)?
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