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Part 1: Introduction to Coding Theory
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The Problem of Information Transmission

We are now 

ready

We are not 

ready

Noisy

Channel
Sender Receiver

• When information is digital, reliability is critical.

• Need to understand errors, and correct them.
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Shannon (1948)

• Model noise by probability distribution.
• Example: Binary symmetric channel (BSC)

◦ Parameter p ∈ [0, 1

2
].

◦ Channel transmits bits.
◦ With probability 1 − p bit transmitted faithfully, and with

probability p bit flipped (independent of all other events).

Shannon’s architecture

• Sender encodes k bits into n bits.
• Transmits n bit string on channel.
• Receiver decodes n bits into k bits.
• Rate of channel usage = k/n.

Algebraic Algorithms and Coding Theory – p. 6/47



Shannon’s theorem

• Every channel (in broad class) has a capacity s.t.,
transmitting at Rate below capacity is feasible and above
capacity is infeasible.

• Example: Binary symmetric channel (p) has capacity
1 − H(p), where H(p) is the binary entropy function.
◦ p = 0 implies capacity = 1.
◦ p = 1

2
implies capacity = 0.

◦ p < 1
2

implies capacity > 0.

• Example: q-ary symmetric channel (p): On input σ ∈ Fq

receiver receives (independently) σ′, where
◦ σ′ = σ w.p. 1 − p.
◦ σ′ uniform over Fq − {σ} w.p. p.

Capacity positive if p < 1 − 1/q.
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Constructive versions

• Shannon’s theory was non-constructive. Decoding takes
exponential time.

• [Elias ’55] gave polytime algorithms to achieve positive rate
on every channel of positive capacity.

• [Forney ’66] achieved any rate < capacity with polynomial
time algorithms (and exponentially small error).

• Modern results (following [Spielman ’96]) lead to linear time
algorithms.
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Hamming (1950)

• Modelled errors adversarially.
• Focussed on image of encoding function (the “Code”).
• Introduced metric (Hamming distance) on range of

encoding function. d(x, y) = # coordinates such that xi 6= yi.
• Noticed that for adversarial error (and guaranteed error

recovery), distance of Code is important.

∆(C) = min
x,y∈C

{d(x, y)}.

• Code of distance d corrects (d − 1)/2 errors.
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Contrast between Shannon & Hamming
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
E.g., flips each bit independently w.p. p.

✔ Tightly analyzed for many cases e.g., q-SC(p).
✗ Channel may be too weak to capture some scenarios.
✗ Need very accurate channel model.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially

✔ Safer model, “good” codes known
✗ Too pessimistic: Can only decode if p < 1/2 for any

alphabet.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Recent work: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Recent work: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

✔ More errors ✔ Strong (enough) errors.
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Summary of origins

• Two seminal works:
◦ [Shannon]: A Mathematical Theory of Communication.
◦ [Hamming]: Error-detecting and error-correcting codes.

• Both went way beyond the immediate motivations and
examined far-reaching subjects. (Shannon more so than
Hamming?)

• Fundamental questions:
◦ [Shannon]: Find capacity of various channels explicitly.

Find efficient encoding and decoding functions.
◦ [Hamming]: Given q find best tradeoff between Rate of

code and (fractional) distance.
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Development

Great progress over last sixty years. Some sample results:

• 1950-1960: First families of codes. Algebraic coding theory.
◦ Reed-Muller Codes.
◦ Reed-Solomon Codes.
◦ BCH Codes.

• 1960-1970: Algorithmic focus intensifies.
◦ Peterson. Berlekamp-Massey.
◦ Gallager - LDPC codes.
◦ Forney - Concatenated codes.

• 1970-1980: Deep theories.
◦ Linear Programming bound.
◦ Lovasz on Shannon Capacity.
◦ Justesen’s codes.
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Development (contd.)

• 1980-1990: Algebraic-Geometry codes. (started in mid 70’s
by Goppa). Better than random!

• 1990-today: Algorithms:
◦ Linear time decoding.
◦ Approaching Shannon capacity in practice.
◦ List-decoding: Best of Hamming+Shannon worlds.

• Today: Focus on algebraic, algorithmic, aspects.
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Part 2: Algebraic Error-Correcting Codes
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Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
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• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.

Algebraic Algorithms and Coding Theory – p. 15/47



Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
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Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?
• Actually - No! [Reed-Solomon] Codes match this bound!
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Reed-Solomon Codes

m1

m2

m3

m4

x1 x2 x3 x4 x5 x6 x7 x8 x9

•Messages ≡ Polynomial.

•Encoding ≡ Evaluation
at x1, . . . , xn.

•n > Degree: Injective

•n ≫ Degree: Redundant
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Reed-Solomon Codes (formally)

• Let Fq be a finite field.

• Code specified by k, n, α1, . . . , αn ∈ Fq.

• Message: 〈c0, . . . , ck〉 ∈ F
k+1
q coefficients of degree k

polynomial p(x) = c0 + c1x + · · · ckx
k.

• Encoding: p 7→ 〈p(α1), . . . , p(αn)〉. (k + 1 letters to n letters.)
• Degree k poly has at most k roots ⇔ Distance d = n − k.
• These are the Reed-Solomon codes.

Match [Singleton] bound!
Commonly used (CDs, DVDs etc.).
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Algebraic Error-Correcting Codes

• Broad class of codes. Include
◦ Reed-Muller codes.
◦ (Dual)-BCH codes.
◦ Algebraic-Geometry (AG) codes (or Goppa codes).
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Algebraic Error-Correcting Codes

• Broad class of codes.
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Algebraic Error-Correcting Codes

• Broad class of codes.

• Unifying theme:
◦ Message space = Collection of algebraic functions.
◦ Encoding = Evaluation over (carefully chosen) subset of

vector space over field.
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Algebraic Error-Correcting Codes

• Broad class of codes.

• Unifying theme:
◦ Message space = Collection of algebraic functions.
◦ Encoding = Evaluation over (carefully chosen) subset of

vector space over field.
• Distance analysis: Varies.

◦ Reed-Solomon/Reed-Muller: # roots of low-degree
polynomials.

◦ BCH: xp + yp = (x + y)p.
◦ Dual-BCH; Weil Bounds.
◦ AG: Reimann-Roch, Drinfeld-Vladuts bound, Weil bound

etc.
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Algebraic Error-Correcting Codes

• Broad class of codes.

• Unifying theme:
◦ Message space = Collection of algebraic functions.
◦ Encoding = Evaluation over (carefully chosen) subset of

vector space over field.
• Distance analysis: Varies.

• Stunning combinatorial implications:
◦ Often better than probabilistic method.
◦ Give asymptotic performance that is unmatched by other

combinatorial techniques.
◦ Often very specific to fields.
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Part 3: Algebraic Algorithms & Coding
A Brief History

Algebraic Algorithms and Coding Theory – p. 19/47



Algorithmic issues in Coding

• Most basic problem: Decoding Problem for Codes
◦ Fix C ⊆ F

n
q .

◦ Transmit c ∈ C. Receive y ∈ F
n
q such that ∆(c, y) ≤ e.

◦ Receiver’s (algorithmic) problem: Given y, compute c (if
it is uniquely determined).
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Algorithmic issues in Coding

• Most basic problem: Decoding Problem for Codes
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Algorithmic issues in Coding

• Most basic problem: Decoding Problem for Codes

• Looks like any other NP-search problem.
◦ Enumerate error locations?
◦ Enumerate codewords?
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• Most basic problem: Decoding Problem for Codes

• Looks like any other NP-search problem.
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Algorithmic issues in Coding

• Most basic problem: Decoding Problem for Codes

• Looks like any other NP-search problem.

• For carefully designed codes, can beat brute force search!
In case of algebraic codes, this often uses non-trivial
algebraic algorithms.
◦ Classical Reed-Solomon decoding: Interpolation.
◦ Decoding of AG codes: Grobner basis algorithms.
◦ Modern Reed-Solomon decoding: Factorization of

bivariate polynomials.
◦ Number-theoretic analogs: Factorization over rationals +

lattice algorithms.
◦ AG codes: Factorization over other rings.
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Algebraic Algorithms inspired by Coding

• Fewer examples, but they do exist!
• [Berlekamp]’s algorithm for factoring over finite fields

motivated by need to decode faster.
• Recent development: [Umans], [Kedlaya-Umans] give

nearly linear-time algorithm for modular polynomial
composition, inspired by some “list-decoding” successes.
Leads to O(n1.5) time algorithm for factorization of
polynomials over finite fields.
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Part 4: Decoding from High-Error
The List-Decoding Problem
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Error-correction capability vs. Rate

• Let E : F
k
q → F

n
q be the “best” code of rate R, i.e., R = k/n.
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Error-correction capability vs. Rate

• Let E : F
k
q → F

n
q be the “best” code of rate R, i.e., R = k/n.

• How many errors can it help correct?

◦ m −→ E(m)
Channel−→ y → Receiver s.t. ∆(E(m), y) ≤ e.

◦ For what e is m efficiently computable?
◦ For what e is m uniquely determined (by E and y)?
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Error-correction capability vs. Rate

• Let E : F
k
q → F

n
q be the “best” code of rate R, i.e., R = k/n.

• How many errors can it help correct?

◦ m −→ E(m)
Channel−→ y → Receiver s.t. ∆(E(m), y) ≤ e.

◦ For what e is m efficiently computable?
◦ For what e is m uniquely determined (by E and y)?

• Depends on model of error!
◦ [Shannon]: Errors random ⇒ p = e/n → 1 − R.
◦ [Hamming]: Errors adversarial ⇒ p = e/n → (1 − R)/2.

(Adversary picks codewords that disagree in 1 − R
fraction of coordinates and lets y be halfway between
them!).
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Error-correction capability vs. Rate

• Let E : F
k
q → F

n
q be the “best” code of rate R, i.e., R = k/n.

• How many errors can it help correct?

◦ m −→ E(m)
Channel−→ y → Receiver s.t. ∆(E(m), y) ≤ e.

◦ For what e is m efficiently computable?
◦ For what e is m uniquely determined (by E and y)?

• Depends on model of error!
◦ [Shannon]: Errors random ⇒ p = e/n → 1 − R.
◦ [Hamming]: Errors adversarial ⇒ p = e/n → (1 − R)/2.

• [Elias] Also depends on notion of error-correction!
◦ Requirement that m be uniquely determined is too

restrictive.
◦ In most (practical and theoretical) cases, suffices to

narrow m down to a small (poly-sized) list.
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Relaxed Decoding : List Decoding

m S C LD
E(m) y z1, . . . , zL

∃i : zi = m

• List decoder LD outputs a short list of all possible
messages.
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Relaxed Decoding : List Decoding

m S C LD
E(m) y z1, . . . , zL

∃i : zi = m

• List decoder LD outputs a short list of all possible
messages.

• Notion due to [Elias57, Wozencraft58].
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E(m) y z1, . . . , zL

∃i : zi = m

• List decoder LD outputs a short list of all possible
messages.

• Notion due to [Elias57, Wozencraft58].

• [Zyablov-Pinsker70s] Exist codes ( S , LD ) correcting
(1 − R − ǫ)-fraction errors with rate R (if q ≥ q(1/ǫ).
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∃i : zi = m

• List decoder LD outputs a short list of all possible
messages.

• Notion due to [Elias57, Wozencraft58].

• [Zyablov-Pinsker70s] Exist codes ( S , LD ) correcting
(1 − R − ǫ)-fraction errors with rate R (if q ≥ q(1/ǫ).

• Matches Shannon! Adversarial Error! But non-constructive!

Algebraic Algorithms and Coding Theory – p. 24/47



Relaxed Decoding : List Decoding

m S C LD
E(m) y z1, . . . , zL

∃i : zi = m

• List decoder LD outputs a short list of all possible
messages.

• Notion due to [Elias57, Wozencraft58].

• [Zyablov-Pinsker70s] Exist codes ( S , LD ) correcting
(1 − R − ǫ)-fraction errors with rate R (if q ≥ q(1/ǫ).

• Matches Shannon! Adversarial Error! But non-constructive!
• Questions:

◦ Can we find such codes?
◦ Can we decode them?
◦ Do Reed-Solomon codes have the desired property?
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List-decodability of Reed-Solomon Codes

• A general result: Code of distance (1 − τ) · n is always
combinatorially-list-decodable from (1 −√

τ) · n errors.
[Johnson] Bound.
◦ If τ → 0, fraction of errors approaches 100%.

• Implication for Reed-Solomon codes:
◦ For any function f : Fq → Fq there are at most ℓ ≤ q2

polynomials p1, . . . , pℓ of degree k = R · n that agree with
f on

√
R · n points.

◦ Open: What about (R + ǫ)n agreement?
• Algorithmic issues:

◦ Find p1, . . . , pℓ efficiently?
◦ Find better code? that can decode from (R + ǫ)n

agreement?
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Rest of the talk

• List-decoding of Reed-Solomon codes
◦ Rate R codes upto

√
2R-fraction agreement.

◦ Rate R codes upto
√

R-fraction agreement.
• List-decoding of Folded Reed-Solomon codes

◦ Rate R codes upto R + ǫ-fraction agreement.
• Makes essential use of algebraic algorithms!
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Part 5:
List-Decoding of Reed-Solomon Codes
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Reed-Solomon Decoding

Restatement of the problem:

Input: n points (αi, yi) ∈ F
2
q ; agreement parameter t

Output: All degree k polynomials p(x) s.t. p(αi) = yi for at
least t values of i.

We use k = 1 for illustration.

i.e. want all “lines” (y − ax − b = 0) that pass through
≥ t out of n points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

Formally, Q(x, y) factors as:
(x2 + y2 − 1)(y + x)(y − x).
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What Happened?

1. Why did degree 4 curve exist?
◦ Counting argument: degree 4 gives enough degrees of

freedom to pass through any 14 points.

2. Why did all the relevant lines emerge/factor out?
◦ Line ℓ intersects a deg. 4 curve Q in 5 points =⇒ ℓ is a

factor of Q
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Generally

Lemma 1: ∃Q with degx(Q),degy(Q) ≤ D =
√

n passing thru any
n points.

Lemma 2: If Q with degx(Q),degy(Q) ≤ D intersects y − p(x) with
deg(p) ≤ d intersect in more that (D + 1)d points, then
y − p(x) divides Q.
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Efficient algorithm?

1. Can find Q by solving system of linear equations
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Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]
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zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

Algebraic Algorithms and Coding Theory – p. 32/47



Efficient algorithm?

1. Can find Q by solving system of linear equations
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Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
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Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
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Part 6: Improved RS List-Decoding
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.
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Fitting degree 4 curve Q
as earlier doesn’t work.
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n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

Correct answer has 5 lines.
Degree 4 curve can’t have

5 factors!
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...
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Where was the gain?

• Requiring Q to pass through each point twice, effectively
doubles the # intersections between Q and line.
◦ So # intersections is now 8.

• On the other hand # constraints goes up from 11 to 33.
Forces degree used to go upto 7 (from
m4).

• But now # intersections is less than degree!

Can pass through each point twice with less than twice the
degree!

• Letting intersection multiplicity go to ∞ gives decoding
algorithm for upto 1 −

√
R errors.
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Part 7: Rate-Optimal List-Decoding
Folded Reed-Solomon Codes and Decoding
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A recent breakthrough

• State of the art in 2005:
◦ Codes of positive rate with error correction rate close to

upper limit.
◦ But Rate only positive, not optimal.
◦ E.g., Say disk has 5% “byte" error rate.

• Rate with unique decoding = 90%.
• Rate promised by list decoding = 95%.
• Rate achieved algorithmically = 90.25%.
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A recent breakthrough

• State of the art in 2005:
◦ Codes of positive rate with error correction rate close to

upper limit.
◦ But Rate only positive, not optimal.

• Breakthrough: [ParvareshVardy 05, GuruswamiRudra 06].
• Codes of rate R correcting 1 − R − ǫ fraction errors over

alphabet of size f(ǫ) (for every ǫ > 0, 0 < R < 1.)

• Key Ingredient: “Folded Reed-Solomon Codes” + Clever
“Concatenation”.

• Analysis complicated (series of accidental discoveries).
• Yields optimal results over large alphabets.
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Folded Reed-Solomon Codes [GR06]

• Message: Univariate degree k polynomial p ∈ Fq[x].

• Encoding:

p(a) p(b) p(d) p(e) p(z)p(f)p(c)
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Folded Reed-Solomon Codes [GR06]

• Message: Univariate degree k polynomial p ∈ Fq[x].

• Encoding:

p(a) p(b) p(d) p(e) p(z)p(f)p(c)

c-element blocks

• a = ω, b = ω2, c = ω3 . . ..

• Defines Code mapping Σk/c → Σn/c for Σ = F
c
q.

• Does the “blocking” really alter the code?
• Surprisingly . . . YES!
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Interleaved Reed-Solomon Codes

p1(a) p1(b) p1(c) p1(d) p1(e) p1(f) p1(z)p1

p2(a) p2(b) p2(c) p2(d) p2(e) p2(f) p2(z)p2

New Alphabet

• Introduced by [Kiayias-Yung] (accidentally)!

• Alphabet = F
2
q .

• Message = (p1, p2), pi ∈ Fq[x] of deg. ≤ k.

• Encoding = 〈(p1(αi), p2(alphai))〉i.
• Rate, Distance, same as RS.
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Interleaved Reed-Solomon Codes

p1(a) p1(b) p1(c) p1(d) p1(e) p1(f) p1(z)p1

p2(a) p2(b) p2(c) p2(d) p2(e) p2(f) p2(z)p2

New Alphabet

• Decoding [Coppersmith Sudan 03]:
• Looks like trivariate polynomial search.
• Find Q(x, y, z) s.t. Q(αi, βi, γi) = 0 (of high multiplicity) for

every i ∈ [n] .

• Degree of Q ∼ n1/3.

✔ Roughly corrects 1 − R2/3 random errors.

✗ Only random errors.
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Interleaved Reed-Solomon Codes

[ParvareshVardy 05]

p1(a) p1(b) p1(c) p1(d) p1(e) p1(f) p1(z)p1

p2(a) p2(b) p2(c) p2(d) p2(e) p2(f) p2(z)p2

New Alphabet

• Problem with naive “interleaving”/decoding:
◦ Only information in Q is that it lies in the ideal

(y − p1(x), z − p2(x)).
◦ So Q gives a curve in Fq[x] × Fq[x] that passes (p1, p2).
◦ Certainly this is hopelessly little info about (p1, p2) to pin

them down!
• Hopeless?
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Related Interleaved Reed-Solomon Codes

[ParvareshVardy 05]

p1(a) p1(b) p1(c) p1(d) p1(e) p1(f) p1(z)p1

p2(a) p2(b) p2(c) p2(d) p2(e) p2(f) p2(z)p2

New Alphabet

• Since Q only give one curve through (p1, p2), lets force them
to lie on a different curve by design!

• Message: p1 ∈ Fq[x]

• Encoding: Compute p2 = pD
1 (mod h(x)) and use interleaved

encoding of (p1, p2).
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Related Interleaved Reed-Solomon Codes

[ParvareshVardy 05]

p1(a) p1(b) p1(c) p1(d) p1(e) p1(f) p1(z)p1

p2(a) p2(b) p2(c) p2(d) p2(e) p2(f) p2(z)p2

New Alphabet

• p1 −→ (p1, p
D
1 (mod h(x))) −→ Interleaved encoding.

• Decoding:
◦ Effectively working in Fq(x)(mod h(x)).
◦ Qx(y, z) and z = yD give enough information to pin down

p1, p2.

✔ Decoding now really works. ✗Rate halves!

• Get codes of rate R decodable from 1 − (2R)2/3 error.
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Folded Reed-Solomon Codes

• If we pick h(x) = xq−1 − ω and D = q, then
p1(x)D = p1(x

D) = p1(ωx).

• c-folded RS code has rate k/n but manages to convey
(c − 1)/c fraction of PV code of rate k/(2n).

p(a) p(b) p(d) p(e) p(z)p(f)p(c)

c-element blocks

• Gives code of rate R correcting 1 − ((c/c − 1)R)2/3)-fraction
errors.

• Letting 2 → ∞ and c → ∞, corrects 1−R− ǫ fraction errors.

Algebraic Algorithms and Coding Theory – p. 45/47



Conclusions

• Algebra plays a fundamental role in the combinatorics,
algorithmics, and practice of Error-correction.

• Algebraic algorithms solve some very non-trivial search
problems!

• Lead to first codes correcting maximal fraction of errors
(1 − R) of any given rate R, over large alphabet.

• Major open problem: Build binary codes of rate 1 − H(p)
list-decodable from p fraction errors.
◦ Will algebra over finite fields play a role?
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Thank You !!
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