Algebraic Algorithms and Coding Theory

Madhu Sudan

— A Survey —

MIT CSAIL

Part 1: Introduction to Coding Theory

The Problem of Information Transmission

The Problem of Information Transmission

The Problem of Information Transmission

- When information is digital, reliability is critical.
- Need to understand <u>errors</u>, and correct them.

Shannon (1948)

- Model noise by probability distribution.
- Example: Binary symmetric channel (BSC)
 - Parameter $p \in [0, \frac{1}{2}]$.
 - Channel transmits bits.
 - With probability 1 p bit transmitted faithfully, and with probability p bit flipped (independent of all other events).

Shannon's architecture

- Sender encodes k bits into n bits.
- Transmits *n* bit string on channel.
- Receiver decodes n bits into k bits.
- Rate of channel usage = k/n.

Shannon's theorem

- Every channel (in broad class) has a capacity s.t., transmitting at Rate below capacity is feasible and above capacity is infeasible.
- Example: Binary symmetric channel (p) has capacity 1 H(p), where H(p) is the binary entropy function.

 $\circ p = 0$ implies capacity = 1.

$$\circ p = \frac{1}{2}$$
 implies capacity $= 0$.

 $\circ p < \frac{1}{2}$ implies capacity > 0.

• Example: *q*-ary symmetric channel (p): On input $\sigma \in \mathbb{F}_q$ receiver receives (independently) σ' , where

$$\circ \ \sigma' = \sigma$$
 w.p. $1-p$.

• σ' uniform over $\mathbb{F}_q - \{\sigma\}$ w.p. p. Capacity positive if p < 1 - 1/q.

Constructive versions

- Shannon's theory was non-constructive. Decoding takes exponential time.
- [Elias '55] gave polytime algorithms to achieve positive rate on every channel of positive capacity.
- [Forney '66] achieved any rate < capacity with polynomial time algorithms (and exponentially small error).
- Modern results (following [Spielman '96]) lead to linear time algorithms.

Hamming (1950)

- Modelled errors adversarially.
- Focussed on image of encoding function (the "Code").
- Introduced metric (Hamming distance) on range of encoding function. d(x, y) = # coordinates such that $x_i \neq y_i$.
- Noticed that for adversarial error (and guaranteed error recovery), <u>distance</u> of Code is important.

$$\Delta(C) = \min_{x,y \in C} \{ d(x,y) \}.$$

• Code of distance *d* corrects (d-1)/2 errors.

[Sha48] : C probabilistic.

- E.g., flips each bit independently w.p. *p*.
- ✓ Tightly analyzed for many cases e.g., q-SC(p).
- X Channel may be too weak to capture some scenarios.
- ✗ Need very accurate channel model.

[Sha48] : C probabilistic.

Corrects many errors. X Channel restricted.

[Sha48] : C probabilistic. Corrects many errors. X Channel restricted.

[Ham50] : C flips bits adversarially

- ✓ Safer model, "good" codes known
- ✗ Too pessimistic: Can only decode if p < 1/2 for any alphabet. ▮

[Sha48] : C probabilistic. ✓ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits *adversarially* X Fewer errors. ✓ More general errors.

- [Sha48] : C probabilistic.
 Corrects many errors. X Channel restricted.
- [Ham50] : C flips bits *adversarially* ★ Fewer errors. ✔ More general errors.
 - Which model is correct? Depends on application.
 Crudely: Small *q* ⇒ Shannon. Large *q* ⇒ Hamming.
 - Recent work: New Models of error-correction + algorithms.
 List-decoding: Relaxed notion of decoding.

- [Sha48] : C probabilistic.
 Corrects many errors. X Channel restricted.
- [Ham50] : C flips bits *adversarially* ★ Fewer errors. ✔ More general errors.
 - Which model is correct? Depends on application.
 Crudely: Small *q* ⇒ Shannon. Large *q* ⇒ Hamming.
 - Recent work: New Models of error-correction + algorithms.
 List-decoding: Relaxed notion of decoding.
 More errors ✓ Strong (enough) errors.

Summary of origins

- Two seminal works:
 - [Shannon]: A Mathematical Theory of Communication.
 - [Hamming]: Error-detecting and error-correcting codes.
- Both went way beyond the immediate motivations and examined far-reaching subjects. (Shannon more so than Hamming?)
- Fundamental questions:
 - [Shannon]: Find capacity of various channels explicitly.
 Find efficient encoding and decoding functions.
 - [Hamming]: Given q find best tradeoff between <u>Rate</u> of code and (fractional) distance.

Development

Great progress over last sixty years. Some sample results:

- 1950-1960: First families of codes. Algebraic coding theory.
 - Reed-Muller Codes.
 - Reed-Solomon Codes.
 - BCH Codes.
- 1960-1970: Algorithmic focus intensifies.
 - Peterson. Berlekamp-Massey.
 - Gallager LDPC codes.
 - Forney Concatenated codes.
- 1970-1980: Deep theories.
 - Linear Programming bound.
 - Lovasz on Shannon Capacity.
 - Justesen's codes.

Development (contd.)

- 1980-1990: Algebraic-Geometry codes. (started in mid 70's by Goppa). Better than random!
- 1990-today: Algorithms:
 - Linear time decoding.
 - Approaching Shannon capacity in practice.
 - List-decoding: Best of Hamming+Shannon worlds.

Today: Focus on algebraic, algorithmic, aspects.

Part 2: Algebraic Error-Correcting Codes

• Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.
- Surely we can do better?

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.
- Surely we can do better?
- Actually No! [Reed-Solomon] Codes match this bound!

Reed-Solomon Codes

• Messages \equiv Polynomial.

- •Encoding \equiv Evaluation at x_1, \ldots, x_n .
- •n > Degree: Injective
- • $n \gg$ Degree: Redundant

Reed-Solomon Codes (formally)

- Let \mathbb{F}_q be a finite field.
- Code specified by $k, n, \alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$.
- Message: $\langle c_0, \dots, c_k \rangle \in \mathbb{F}_q^{k+1}$ coefficients of degree kpolynomial $p(x) = c_0 + c_1 x + \cdots + c_k x^k$.
- Encoding: $p \mapsto \langle p(\alpha_1), \ldots, p(\alpha_n) \rangle$. (k + 1 letters to n letters.)
- Degree k poly has at most k roots \Leftrightarrow Distance d = n k.
- These are the Reed-Solomon codes. Match [Singleton] bound! Commonly used (CDs, DVDs etc.).

- Broad class of codes. Include
 - Reed-Muller codes.
 - (Dual)-BCH codes.
 - Algebraic-Geometry (AG) codes (or Goppa codes).

• Broad class of codes.

- Broad class of codes.
- Unifying theme:
 - Message space = Collection of algebraic functions.
 - Encoding = Evaluation over (carefully chosen) subset of vector space over field.

- Broad class of codes.
- Unifying theme:
 - Message space = Collection of algebraic functions.
 - Encoding = Evaluation over (carefully chosen) subset of vector space over field.
- Distance analysis: Varies.
 - Reed-Solomon/Reed-Muller: # roots of low-degree polynomials.
 - **BCH**: $x^p + y^p = (x + y)^p$.
 - Dual-BCH; Weil Bounds.
 - AG: Reimann-Roch, Drinfeld-Vladuts bound, Weil bound etc.

- Broad class of codes.
- Unifying theme:
 - Message space = Collection of algebraic functions.
 - Encoding = Evaluation over (carefully chosen) subset of vector space over field.
- Distance analysis: Varies.

- Broad class of codes.
- Unifying theme:
 - Message space = Collection of algebraic functions.
 - Encoding = Evaluation over (carefully chosen) subset of vector space over field.
- Distance analysis: Varies.
- Stunning combinatorial implications:
 - Often better than probabilistic method.
 - Give asymptotic performance that is unmatched by other combinatorial techniques.
 - Often very specific to fields.

Part 3: Algebraic Algorithms & Coding A Brief History

Algorithmic issues in Coding

- Most basic problem: Decoding Problem for Codes
 - Fix $C \subseteq \mathbb{F}_q^n$.
 - Transmit $c \in C$. Receive $y \in \mathbb{F}_q^n$ such that $\Delta(c, y) \leq e$.
 - Receiver's (algorithmic) problem: Given y, compute c (if it is uniquely determined).

Algorithmic issues in Coding

• Most basic problem: Decoding Problem for Codes
Algorithmic issues in Coding

- Most basic problem: Decoding Problem for Codes
- Looks like any other NP-search problem.
 - Enumerate error locations?
 - Enumerate codewords?

Algorithmic issues in Coding

- Most basic problem: Decoding Problem for Codes
- Looks like any other NP-search problem.

Algorithmic issues in Coding

- Most basic problem: Decoding Problem for Codes
- Looks like any other NP-search problem.
- For carefully <u>designed</u> codes, can beat brute force search! In case of algebraic codes, this often uses non-trivial algebraic algorithms.
 - Classical Reed-Solomon decoding: Interpolation.
 - Decoding of AG codes: Grobner basis algorithms.
 - Modern Reed-Solomon decoding: Factorization of bivariate polynomials.
 - Number-theoretic analogs: Factorization over rationals + lattice algorithms.
 - AG codes: Factorization over other rings.

Algebraic Algorithms inspired by Coding

- Fewer examples, but they do exist!
- [Berlekamp]'s algorithm for factoring over finite fields motivated by need to decode faster.
- Recent development: [Umans], [Kedlaya-Umans] give nearly linear-time algorithm for modular polynomial composition, inspired by some "list-decoding" successes. Leads to O(n^{1.5}) time algorithm for factorization of polynomials over finite fields.

Part 4: Decoding from High-Error The List-Decoding Problem

• Let $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ be the "best" code of rate R, i.e., R = k/n.

- Let $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ be the "best" code of rate R, i.e., R = k/n.
- How many errors can it help correct?
 - $\circ \ m \longrightarrow E(m) \stackrel{\text{Channel}}{\longrightarrow} y \rightarrow \text{Receiver s.t. } \Delta(E(m), y) \leq e.$
 - \circ For what *e* is *m* efficiently computable?
 - For what e is m uniquely determined (by E and y)?

- Let $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ be the "best" code of rate R, i.e., R = k/n.
- How many errors can it help correct?
 - $m \longrightarrow E(m) \xrightarrow{\text{Channel}} y \rightarrow \text{Receiver s.t. } \Delta(E(m), y) \leq e.$
 - \circ For what *e* is *m* efficiently computable?
 - For what e is m uniquely determined (by E and y)?
- Depends on model of error!
 - ° [Shannon]: Errors random $\Rightarrow p = e/n \rightarrow 1 R$.
 - [Hamming]: Errors adversarial $\Rightarrow p = e/n \rightarrow (1 R)/2$. (Adversary picks codewords that disagree in 1 - Rfraction of coordinates and lets y be halfway between them!).

- Let $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ be the "best" code of rate R, i.e., R = k/n.
- How many errors can it help correct?
 - $m \longrightarrow E(m) \xrightarrow{\text{Channel}} y \rightarrow \text{Receiver s.t. } \Delta(E(m), y) \leq e.$
 - \circ For what *e* is *m* efficiently computable?
 - For what e is m uniquely determined (by E and y)?
- Depends on model of error!
 - [Shannon]: Errors random $\Rightarrow p = e/n \rightarrow 1 R$.
 - [Hamming]: Errors adversarial $\Rightarrow p = e/n \rightarrow (1 R)/2$.
- [Elias] Also depends on notion of error-correction!
 - Requirement that *m* be uniquely determined is too restrictive.
 - $^{\circ}$ In most (practical and theoretical) cases, suffices to narrow m down to a small (poly-sized) list.

$$\mathbf{m} \to S \xrightarrow{E(m)} \mathcal{C} \xrightarrow{y} LD \xrightarrow{\mathbf{z}_1, \dots, \mathbf{z}_L} \overline{\exists i : \mathbf{z}_i = \mathbf{m}}$$

• List decoder <u>*LD*</u> outputs a short *list* of all possible messages.

$$\mathbf{m} \to S \xrightarrow{E(m)} \mathcal{C} \xrightarrow{y} LD \xrightarrow{\mathbf{z}_1, \dots, \mathbf{z}_L} \overline{\exists i : \mathbf{z}_i = \mathbf{m}}$$

- List decoder <u>*LD*</u> outputs a short *list* of all possible messages.
- Notion due to [Elias57, Wozencraft58].

$$\mathbf{m} \to S \xrightarrow{E(m)} \mathcal{C} \xrightarrow{y} LD \xrightarrow{\mathbf{z}_1, \dots, \mathbf{z}_L} \overline{\exists i : \mathbf{z}_i = \mathbf{m}}$$

- List decoder <u>*LD*</u> outputs a short *list* of all possible messages.
- Notion due to [Elias57, Wozencraft58].
- [Zyablov-Pinsker70s] Exist codes (S, LD) correcting $(1 R \epsilon)$ -fraction errors with rate R (if $q \ge q(1/\epsilon)$.

$$\mathbf{m} \to S \xrightarrow{E(m)} \mathcal{C} \xrightarrow{y} LD \xrightarrow{\mathbf{z}_1, \dots, \mathbf{z}_L} \overline{\exists i : \mathbf{z}_i = \mathbf{m}}$$

- List decoder <u>LD</u> outputs a short *list* of all possible messages.
- Notion due to [Elias57, Wozencraft58].
- [Zyablov-Pinsker70s] Exist codes (S, LD) correcting $(1 R \epsilon)$ -fraction errors with rate R (if $q \ge q(1/\epsilon)$.
- Matches Shannon! Adversarial Error! But non-constructive!

$$\mathbf{m} \to S \xrightarrow{E(m)} \mathcal{C} \xrightarrow{y} LD \xrightarrow{\mathbf{z}_1, \dots, \mathbf{z}_L} \overline{\exists i : \mathbf{z}_i = \mathbf{m}}$$

- List decoder <u>LD</u> outputs a short *list* of all possible messages.
- Notion due to [Elias57, Wozencraft58].
- [Zyablov-Pinsker70s] Exist codes (S, LD) correcting $(1 R \epsilon)$ -fraction errors with rate R (if $q \ge q(1/\epsilon)$.
- Matches Shannon! Adversarial Error! But non-constructive!
- Questions:
 - Can we find such codes?
 - Can we decode them?
 - Do Reed-Solomon codes have the desired property?

List-decodability of Reed-Solomon Codes

- A general result: Code of distance (1 − τ) · n is always combinatorially-list-decodable from (1 − √τ) · n errors.
 [Johnson] Bound.
 - If $\tau \rightarrow 0$, fraction of errors approaches 100%.
- Implication for Reed-Solomon codes:
 - For any function $f : \mathbb{F}_q \to \mathbb{F}_q$ there are at most $\ell \leq q^2$ polynomials p_1, \ldots, p_ℓ of degree $k = R \cdot n$ that agree with f on $\sqrt{R} \cdot n$ points.
 - Open: What about $(R + \epsilon)n$ agreement?
- Algorithmic issues:
 - Find p_1, \ldots, p_ℓ efficiently?
 - Find better code? that can decode from $(R + \epsilon)n$ agreement?

Rest of the talk

- List-decoding of Reed-Solomon codes
 - Rate *R* codes upto $\sqrt{2R}$ -fraction agreement.
 - Rate *R* codes upto \sqrt{R} -fraction agreement.
- List-decoding of Folded Reed-Solomon codes
 - Rate *R* codes upto $R + \epsilon$ -fraction agreement.
- Makes essential use of algebraic algorithms!

Part 5: List-Decoding of Reed-Solomon Codes

Reed-Solomon Decoding

Restatement of the problem:

- Input: *n* points $(\alpha_i, y_i) \in \mathbb{F}_q^2$; agreement parameter *t*
- Output: All degree k polynomials p(x) s.t. $p(\alpha_i) = y_i$ for at least t values of i.

We use k = 1 for illustration.

- i.e. want *all* "lines" (y - ax - b = 0) that pass through $\geq t$ out of *n* points.

n = 14 points; Want all *lines* through at least 5 points.

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \neq 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points.

n = 14 points; Want all *lines* through at least 5 points.

0		0		0
0	0		0	
		0		0
0	0		0	
0		0		0

Find deg. 4 poly. $Q(x, y) \not\equiv 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ...

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \not\equiv 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ... Both relevant lines emerge !

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \neq 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ... Both relevant lines emerge ! Formally, Q(x, y) factors as: $(x^2 + y^2 - 1)(y + x)(y - x)$.

What Happened?

- 1. Why did degree 4 curve exist?
 - Counting argument: degree 4 gives enough degrees of freedom to pass through any 14 points.
- 2. Why did all the relevant lines emerge/factor out?
 - Line ℓ intersects a deg. 4 curve Q in 5 points $\Longrightarrow \ell$ is a factor of Q

Generally

- **Lemma 1:** $\exists Q$ with $\deg_x(Q), \deg_y(Q) \le D = \sqrt{n}$ passing thru any n points.
- Lemma 2: If Q with $\deg_x(Q), \deg_y(Q) \leq D$ intersects y p(x) with $\deg(p) \leq d$ intersect in more that (D+1)d points, then y p(x) divides Q.

1. Can find Q by solving system of linear equations

- 1. Can find Q by solving system of linear equations
- 2. Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]

- 1. Can find Q by solving system of linear equations
- 2. Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem:</u> Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem:</u> Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

• With some fine-tuning of parameters:

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

• With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.
- Does not meet combinatorial bounds though!

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.
- Does not meet combinatorial bounds though!

Part 6: Improved RS List-Decoding

Going Further: Example 2 [Guruswami+S. '98]

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Going Further: Example 2 [Guruswami+S. '98]

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve *Q* as earlier doesn't work.

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve Q as earlier doesn't work.

Why?

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve Q as earlier doesn't work.

Why?

Correct answer has 5 lines. Degree 4 curve can't have 5 factors!

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ...

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ... All relevant lines emerge!

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ... All relevant lines emerge!

Where was the gain?

- Requiring *Q* to pass through each point twice, effectively doubles the *#* intersections between *Q* and line.
 - So # intersections is now 8.
- On the other hand # constraints goes up from 11 to 33.
 Forces degree used to go upto 7 (from m4).
- But now # intersections is less than degree!

Can pass through each point twice with less than twice the degree!

• Letting intersection multiplicity go to ∞ gives decoding algorithm for upto $1 - \sqrt{R}$ errors.

Part 7: Rate-Optimal List-Decoding Folded Reed-Solomon Codes and Decoding

A recent breakthrough

- State of the art in 2005:
 - Codes of positive rate with error correction rate close to upper limit.
 - But Rate only positive, not optimal.
 - E.g., Say disk has 5% "byte" error rate.
 - Rate with unique decoding = 90%.
 - Rate promised by list decoding = 95%.
 - Rate achieved algorithmically = 90.25%.

A recent breakthrough

- State of the art in 2005:
 - Codes of positive rate with error correction rate close to upper limit.
 - But Rate only positive, not optimal.
- Breakthrough: [ParvareshVardy 05, GuruswamiRudra 06].
- Codes of rate *R* correcting $1 R \epsilon$ fraction errors over alphabet of size $f(\epsilon)$ (for every $\epsilon > 0, 0 < R < 1$.)
- Key Ingredient: "Folded Reed-Solomon Codes" + Clever "Concatenation".
- Analysis complicated (series of accidental discoveries).
- Yields optimal results over large alphabets.

Folded Reed-Solomon Codes [GR06]

- Message: Univariate degree k polynomial $p \in \mathbb{F}_q[x]$.
- Encoding:

Folded Reed-Solomon Codes [GR06]

- Message: Univariate degree k polynomial $p \in \mathbb{F}_q[x]$.
- Encoding:

•
$$a = \omega, b = \omega^2, c = \omega^3 \dots$$

- Defines Code mapping $\Sigma^{k/c} \to \Sigma^{n/c}$ for $\Sigma = \mathbb{F}_q^c$.
- Does the "blocking" really alter the code?
- Surprisingly ... YES!

Interleaved Reed-Solomon Codes

- Introduced by [Kiayias-Yung] (accidentally)!
- Alphabet = \mathbb{F}_q^2 .
- Message = $(p_1, p_2), p_i \in \mathbb{F}_q[x]$ of deg. $\leq k$.
- Encoding = $\langle (p_1(\alpha_i), p_2(alpha_i)) \rangle_i$.
- Rate, Distance, same as RS.

Interleaved Reed-Solomon Codes

- Decoding [Coppersmith Sudan 03]:
- Looks like <u>trivariate</u> polynomial search.
- Find Q(x, y, z) s.t. $Q(\alpha_i, \beta_i, \gamma_i) = 0$ (of high multiplicity) for every $i \in [n]$.
- Degree of $Q \sim n^{1/3}$.
- ✓ Roughly corrects $1 R^{2/3}$ random errors.
- X Only *random* errors.

Interleaved Reed-Solomon Codes

- Problem with naive "interleaving"/decoding:
 - Only information in Q is that it lies in the ideal $(y p_1(x), z p_2(x))$.
 - So Q gives a curve in $F_q[x] \times \mathbb{F}_q[x]$ that passes (p_1, p_2) .
 - Certainly this is hopelessly little info about (p_1, p_2) to pin them down!
- Hopeless?

Related Interleaved Reed-Solomon Codes

- Since Q only give one curve through (p_1, p_2) , lets force them to lie on a different curve by design!
- Message: $p_1 \in \mathbb{F}_q[x]$
- Encoding: Compute $p_2 = p_1^D \pmod{h(x)}$ and use interleaved encoding of (p_1, p_2) .

Related Interleaved Reed-Solomon Codes

$$p_{1} \rightarrow p_{1}(a) p_{1}(b) p_{1}(c) p_{1}(d) p_{1}(e) p_{1}(f) \bullet \bullet \bullet p_{1}(z)$$

$$p_{2} \rightarrow p_{2}(a) p_{2}(b) p_{2}(c) p_{2}(d) p_{2}(e) p_{2}(f) \bullet \bullet \bullet p_{2}(z)$$
New Alphabet

- $p_1 \longrightarrow (p_1, p_1^D \pmod{h(x)}) \longrightarrow$ Interleaved encoding.
- Decoding:
 - Effectively working in $\mathbb{F}_q(x) \pmod{h(x)}$.
 - $Q_x(y,z)$ and $z = y^D$ give enough information to pin down p_1, p_2 .
- Decoding now really works. XRate halves!
 - Get codes of rate *R* decodable from $1 (2R)^{2/3}$ error.

Folded Reed-Solomon Codes

- If we pick $h(x) = x^{q-1} \omega$ and D = q, then $p_1(x)^D = p_1(x^D) = p_1(\omega x)$.
- *c*-folded RS code has rate k/n but manages to convey (c-1)/c fraction of PV code of rate k/(2n).

c-element blocks

- Gives code of rate R correcting $1 ((c/c 1)R)^{2/3})$ -fraction errors.
- Letting $2 \to \infty$ and $c \to \infty$, corrects $1 R \epsilon$ fraction errors.

Conclusions

- Algebra plays a fundamental role in the combinatorics, algorithmics, and practice of Error-correction.
- Algebraic algorithms solve some very non-trivial search problems!
- Lead to first codes correcting maximal fraction of errors (1 R) of any given rate R, over large alphabet.
- Major open problem: Build binary codes of rate 1 H(p) list-decodable from p fraction errors.
 - Will algebra over finite fields play a role?

Thank You !!