Universal Semantic Communication

Madhu Sudan MIT CSAIL

Joint work with Brendan Juba (MIT CSAIL).

8/6/2008

The Meaning of Bits

- What if Alice is trying to send instructions?
 - Aka, an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?
- Sales pitch: Crucial to the future of computing. More and more heterogenous computers, data, and software interact without human in the loop.

Some modelling

- Say, Alice and Bob know different programming languages. Alice wishes to communicate an algorithm to Bob.
- Bad News: Can't be done
 - For every Bob, there exist algorithms A and A', and Alices, Alice and Alice', such that the two are indistinguishable to Bob.
- Good News: Need not be done.
 - From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.

What should be communicated? Why?

8/6/2008

Modelling Bob and his perspective

Bob:
$$\Omega \times \Sigma^k \to \Omega \times \Gamma^\ell$$
,
where $\Omega = \text{countable state space}$
 $\Sigma^k = \text{input signals}$
 $\Gamma^\ell = \text{output signals.}$

- Bob speaks to some environment (a multitude of entities).
- Why? Has some goal!
 - "Control": Wants to alter the state of the environment.
 - "Intellectual": Wants to glean knowledge (about universe/environment).
- Claim: By studying the goals, can enable Bob to overcome linguistic differences (and achieve goal).

8/6/2008

Rest of the talk

- Part I: Bob wishes to solve hard problem, is computationally limited, and Alice can solve the problem.
- Part II: Bob is a teacher and wants to test student's ability.
- Part III: Generic goals.

Part I: A Computational Goal

8/6/2008

Computational Goal for Bob

- Bob is prob. poly time bounded. Wants to decide membership in set S.
- Alice is computationally unbounded, does not speak same language as Bob, but is "helpful".
- What kind of sets S?
 - E.g., undecidable?, decidable? PSPACE, NP, BPP?

Setup

Intelligence & Cooperation?

- For Bob to have a non-trivial interaction, Alice must be:
 - Intelligent: Capable of deciding if x in S.
 - Cooperative: Must communicate this to Bob.
- Formally:
 - Alice is **S-helpful**

if \exists probabilistic poly time (ppt) Bob B' s.t. \forall initial state of mind σ , $A(\sigma) \leftrightarrow B'(x)$ accept w.h.p. iff $x \in S$.

Successful universal communication

- Bob should be able to talk to any S-helpful Alice and decide S.
- Formally,
 - Ppt B is S-universal if for every $x \in \{0, 1\}^*$ - A is S-helpful $\Rightarrow [A \leftrightarrow B(x)] = 1$ iff $x \in S$ (whp). A is not S-helpful \Rightarrow Nothing!!

Or should it be ...

A is not S-helpful $\Rightarrow [A \leftrightarrow B(x)] = 1$ implies $x \in S$.

Main Theorem

- If S is PSPACE-complete, then there exists a Suniversal Bob (generalizes to other checkable sets S).
- Conversely, if there exists a S-universal Bob, then S is in PSPACE.

In other words:

- If S is moderately stronger than what Bob can do on his own, then attempting to solve S leads to non-trivial (useful) conversation.
- If S too strong, then leads to ambiguity.
- Uses IP=PSPACE

Few words about the proof

Positive result: Enumeration + Interactive Proofs Guess: Interpreter; $x \in S$?

Proof works $\Rightarrow x \in S$; Doesnt work \Rightarrow Guess wrong. Alice S-helpful \Rightarrow Interpreter exists!

Proof of Negative Result

L not in PSPACE implies Bob makes mistakes.

- Suppose Alice answers every question so as to minimize the conversation length.
 - (Reasonable effect of misunderstanding).
- Conversation comes to end quickly.
- Bob has to decide.
- Conversation + Decision simulatable in PSPACE (since Alice's strategy can be computed in PSPACE).
- Bob must be wrong if S is not in PSPACE.
- Warning: Only leads to finitely many mistakes.

Part II: Intellectual Curiosity

8/6/2008

Setting: Bob more powerful than Alice

What should Bob's Goal be?

- Can't use Alice to solve problems that are hard for him.
- Can pose problems and see if she can solve them. E.g., Teacher-student interactions.
- But how does he verify "non-triviality"?
- What is "non-trivial"? Must distinguish ...

Setting: Bob more powerful than Alice

- Concretely:
 - Bob capable of TIME(n¹⁰).
 - Alice capable of TIME(n³) or nothing.
 - Can Bob distinguish the two settings?
- Definition:
- Alice is $n^{3-\epsilon}$ -helpful if \neg Dob D' \neg TIME $(m^{3-\epsilon})$
 - if \exists Bob $B' \in \text{TIME}(n^{3-\epsilon})$ s.t. $\forall S \in \text{TIME}(n^3)$, and \forall initial state of mind σ , $A(\sigma) \leftrightarrow B'(x_1, \dots, x_n)$ computes $S(x_1), \dots, S(x_n)$.
- Theorem: There exists a universal Bob that distinguishes helpful Alices from trivial ones.
- Moral: Language (translation) should be simpler than problems being discussed.

8/6/2008

Part III: Generic Goals

8/6/2008

Semantic Communication

17

Generically

Bob interacts with an environment (collection of entities).

- Function of transcript of interaction
- States of environment!
- But not Bob itself!
- Should forgive finite prefixes.

8/6/2008

Generic Helpfulness, Universality

- Consider a class of Alices \mathcal{A}_{r} a class of Bobs \mathcal{B} , and some goal G
 - (G, \mathcal{B})-Helpful: Helpful for some Bob in \mathcal{B} .
 - (G, \mathcal{A})-Universal: Works with all Alices in \mathcal{A} .
- A -Verifiable protocol: For every A in A, Protocol accepts iff goal is achieved.

Theorem: Verifiable Goals can be achieved universally.

Conclusions

- Communication of "meaning/context" is feasible; provided goals are explicit.
- Verifying "goal achievement" for non-trivial goals is the (only?) way to learn languages.
- Currently the learning is slow ... is this inherent?
 Better class of Alices?
- What are interesting goals, and how can they be verified?

Thank You!

8/6/2008