Universal Semantic Communication

Madhu Sudan MIT CSAIL

Joint work with Brendan Juba (MIT CSAIL).

10/14/2008

The Meaning of Bits

- Is this perfect communication?
- What if Alice is trying to send instructions?
 - In other words ... an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?

Motivation: Better Computing

Networked computers use common languages:

- Interaction between computers (getting your computer onto internet).
- Interaction between pieces of software.
- Interaction between software, data and devices.
- Getting two computing environments to "talk" to each other is getting problematic:
 - time consuming, unreliable, insecure.

Can we communicate more like humans do?

Some modelling

- Say, Alice and Bob know different programming languages. Alice wishes to send an algorithm A to Bob.
- Bad News: Can't be done
 - For every Bob, there exist algorithms A and A', and Alices, Alice and Alice', such that Alice sending A is indistinguishable (to Bob) from Alice' sending A'
- Good News: Need not be done.
 - From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.
- What should be communicated? Why?

Aside: Why communicate?

Classical "Theory of Computing"

$$X \longrightarrow F \longrightarrow F(X)$$

Issues: Time/Space on DFA? Turing machines?

 Issues: Reliability, Security, Privacy, Agreement?
 If communication is so problematic, then why not "Not do it"?

(Selfish) Motivations for Communication

- Bob speaks to some environment (a collection of entities).
- Why? Has some goal!
 - Control": Wants to alter the state of the environment.
 - "Intellectual": Wants to glean knowledge (about universe/environment).
- Claim: By studying the goals, can enable Bob to overcome linguistic differences (and achieve goal).

Rest of the talk

- Part I: Bob is computationally limited but wishes to solve hard problem, and Alice can solve the problem.
- Part II: Bob is a teacher and wants to test student's ability.
- Part III: Generic goals.

Part I: A Computational Goal

10/14/2008

Modelling the communicator (Bob)

Bob: $\Omega \times \Sigma^k \to \Omega \times \Gamma^\ell$, where $\Omega = \text{countable state space}$ $\Sigma^k = \text{input signals}$ $\Gamma^\ell = \text{output signals.}$

Alice similar

Computational Goal for Bob

- Bob is prob. poly time bounded. Wants to decide membership in set S.
- Alice is computationally unbounded, does not speak same language as Bob, but is "helpful".
- What kind of sets S?
 - E.g., undecidable?, decidable? PSPACE, NP, BPP?

Setup

Helpful Alice?

- For Bob to have a non-trivial interaction, Alice must be:
 - Intelligent: Capable of deciding if x in S.
 - Cooperative: Must communicate this to Bob.
- Formally:
 - Alice is **S-helpful**

if \exists probabilistic poly time (ppt) Bob B' s.t. \forall initial state of mind σ , $A(\sigma) \leftrightarrow B'(x)$ accept w.h.p. iff $x \in S$.

Successful universal communication

 Bob should be able to talk to any S-helpful Alice and decide S.

Formally,

Ppt B is S-universal if for every $x \in \{0, 1\}^*$ - A is S-helpful $\Rightarrow [A \leftrightarrow B(x)] = 1$ iff $x \in S$ (whp). A is not S-helpful \Rightarrow Nothing!!

Or should it be ...

A is not S-helpful $\Rightarrow [A \leftrightarrow B(x)] = 1$ implies $x \in S$.

Main Theorem

- If S is PSPACE-complete, then there exists a Suniversal Bob (generalizes to other checkable sets S).
- Conversely, if there exists a S-universal Bob, then S is in PSPACE.

In other words:

- If S is moderately stronger than what Bob can do on his own, then attempting to solve S leads to non-trivial (useful) conversation.
- If S too strong, then leads to ambiguity.
- Uses IP=PSPACE [LFKN, Shamir]

Few words about the proof

• Positive result: Enumeration + Interactive Proofs Guess: Interpreter; $x \in S$?

Proof works $\Rightarrow x \in S$; Doesnt work \Rightarrow Guess wrong. Alice S-helpful \Rightarrow Interpreter exists!

Proof of Negative Result

L not in PSPACE implies Bob makes mistakes.

- Suppose Alice answers every question so as to minimize the conversation length.
 - (Reasonable effect of misunderstanding).
- Conversation comes to end quickly.
- Bob has to decide.
- Conversation + Decision simulatable in PSPACE (since Alice's strategy can be computed in PSPACE).
- Bob must be wrong if S is not in PSPACE.
- Warning: Only leads to finitely many mistakes.

Part II: Generic Goals

10/14/2008

Generically

Bob interacts with an environment (collection of Alices).

- What should goal depend on?
 - States of Bob? Then how can Bob adapt to Alice?
 - State of Alice(s)? Bob doesn't know this!

Transcript of interaction? Does this mean the same thing for different Alice/Bob pairs?

An Analogy: Multiparty Computation

- Need to model generic multiparty computation, to present general protocols for "secure, private, multiparty computation".
- Modelled by "Ideal Trusted Party"

Generic Goals

Framework: Bob talks to Alice thru Interpreter

- Bob defines the Goal (though his actions may depend also on what the interpreter hears from Alice).
- Alice comes from class Ă; Interpreter from Ĭ
- Alice is helpful if Bob achieves his goal with her thru some Interpreter in I
- Interpreter is universal if Bob achieve his goal for every helpful Alice in Å.

10/14/2008

Generic Helpfulness, Universality

- Consider: Class of Alices A, Class of Interpreters I and some goal given by Bob B
 - (B, \mathcal{I})-Helpful: Alice helpful to Bob via some Interpreter in \mathcal{I} .
 - (B, A)-Universal: Interpreter works with all Alice in A.
- Theorem: "Forgiving", "verifiable" Goals can be achieved universally.
 - "Forgiving" no finite prefix of interaction should rule out achievement of Goal.
 - "Verifiability" ...

Typical Goals

- Intent of Goals: Usually depend on state of Alice!
- Realizable goals: Can only depend on state of Bob, Interpreter and interactions.
- Translating Intent to Realizable Goal: non-trivial.

Part III: Intellectual Curiosity

10/14/2008

Setting: Bob more powerful than Alice

- What should Bob's Goal be?
 - Can't use Alice to solve problems that are hard for him.
 - Can pose problems and see if she can solve them. E.g., Teacher-student interactions.
 - But how does he verify "non-triviality"?
 - What is "non-trivial"? Must distinguish ...

Setting: Bob more powerful than Alice

- Concretely:
 - Bob capable of TIME(n¹⁰).
 - Alice capable of TIME(n³) or nothing.
 - Can Bob distinguish the two settings?
- Definition:
- Alice is $n^{3-\epsilon}$ -helpful if \exists Bob $B' \in \text{TIME}(n^{3-\epsilon})$ s.t. $\forall S \in \text{TIME}(n^3)$, and \forall initial state of mind σ ,
 - $A(\sigma) \leftrightarrow B'(x_1, \ldots, x_n)$ computes $S(x_1), \ldots, S(x_n)$.
- Theorem: There exists a universal Bob that distinguishes helpful Alices from trivial ones.
- Moral: Language (translation) should be simpler than problems being discussed.

10/14/2008

Conclusions

- Communication of "meaning/context" is feasible; provided goals are explicit.
- Verifying "goal achievement" for non-trivial goals is the (only?) way to learn languages.
- Currently the learning is slow ... is this inherent?
 Better class of Alices?

What are interesting goals, and how can they be verified?

Thank You!

10/14/2008

Computers Communicate!

Classical "Theory of Computing"

Issues: Time/Space on DFA? Turing machines?

Issues: Reliability, Security, Privacy, Agreement?

Computers Communicate! How? Why?

Classical Introduction to Theory of Computing

Bad News: Can't be done

 For every Bob, there exist algorithms A and A', and Alices, Alice and Alice', such that the two are indistinguishable to Bob.

Good News: Need not be done.

From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.

What should be communicated? Why?

Computers Communicate!

Classical Introduction to Theory of Computing

Bad News: Can't be done

 For every Bob, there exist algorithms A and A', and Alices, Alice and Alice', such that the two are indistinguishable to Bob.

Good News: Need not be done.

From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.

What should be communicated? Why?