Local Testability and Decodability of Sparse Linear Codes

Madhu Sudan MIT

Joint work with Tali Kaufman (IAS & MIT).

March 30, 2008

Locality from Sparsity

1

Local (Sublinear-time) Algorithmics

Data getting ever-larger

Need algorithms that can infer "global" properties from "local" observations ...

Led to

Property testing, Sublinear-time algorithms

Common themes:

Oracle-access to input, implicit output.

Answers of the form: "input close to having property"

Error-Correcting Codes

• Code: $C \subseteq \{0,1\}^n$ image of $E : \{0,1\}^k \to \{0,1\}^n$

Distance ...

• ... between sequences: $\delta(x, y) = \Pr_i[x_i \neq y_i]$ • ... of code: $\delta(C) = \min_{x \neq y \in C} \{\delta(x, y)\}$

Algorithmic Problems:

- Encode: Compute E
- Detect Errors: Given $r \in \{0,1\}^n$, is $r \in C$? Or $\exists x \in C$ s.t. $\delta(r,x) \leq \epsilon$?

Decode: Given
$$r \in \{0,1\}^n$$
 s.t. $\exists x \in C$
with $\delta(r,x) \leq \epsilon$, compute x .

Local Algorithmics in Coding

Encoding: Can not be performed "locally"

Single bit change in input should alter constant fraction of output!

- Testing, Decoding, Error-correcting ... can be performed locally. Furthermore
 - They are very natural problems.
 - Have many applications in theory (PCP, PIR, Hardness amplification).
 - Lots of interesting effects are achievable.

Local Algorithmic Problems

- Common framework: Fixed code C ∈ {0,1}ⁿ;
 Oracle access to r ∈ {0,1}ⁿ; Only k queries allowed.
 Local Testing: accept if r ∈ C reject (with Ω(1) prob.) if δ(r, C) ≥ ε.
- Local Self-Correction: Promise: $\exists c \in C \text{ s.t. } \delta(c, r) \leq \epsilon$. Given $i \in [n]$, compute c_i
- Local Decoding:

Setup: Fix $E : \{0,1\}^k \to \{0,1\}^n$ s.t. C = Image(E). Promise: $\exists m \text{ s.t. } \delta(E(m),r) \leq \epsilon$. Given $i \in [k]$, compute m_i

Example: Hadamard Codes

• Encoding: Given $m \in \{0,1\}^{\log n}$, and $x \in \{0,1\}^{\log n}$ $E(m)_x = \sum_{i=1}^{\log n} m_i x_i \pmod{2}$

• Test: Accept iff
$$r_x + r_y = r_{x+y}$$

• Correction: Given $x \in \{0,1\}^{\log n}$, pick $y \in \{0,1\}^{\log n}$ uniformly and output $r_{x+y} - r_y$

Decoding:

ith bit of message is e_i th coordinate of its encoding.

Brief History

Local Decoding/Self-Correcting:

- [Beaver-Feigenbaum], [Lipton], [Blum-Luby-Rubinfeld] – instances of Local Decodability.
- [Katz-Trevisan] first definition.

<mark>-</mark> ...

Locally Testable Codes:

- [Blum-Luby-Rubinfeld], [Babai-Fortnow-Lund]
 first instances.
- [Arora], [Rubinfeld-Sudan], [Spielman], [Goldreich-Sudan] – definitions.

...

Constructions of Locally X-able Codes

Basic codes: Algebraic in nature.

- Analysis:
 - Decoding: typically simple, uses algebra.
 - Testing: more complex.
- Better codes: Careful compositions of basic codes.
 Exception: [Meir '08] not algebraic.
- Questions:
 - Do we need all this algebra/careful constructions?
 - Can we derive local algorithms from "classical" parameters?
 - Can randomly chosen codes have local algorithms?

Our Results

- Theorem (Informal): Every "sparse", "linear" code of "large distance" is locally testable, correctible.
- Linear? C linear if $x, y \in C \Rightarrow x + y \in C$ Sparse? C is <u>t-sparse if $|C| \leq n^t$ </u>
- Large Distance?

C has γ -large-distance if $\delta(C) \geq \frac{1}{2} - n^{-\gamma}$

Theorem 1: $\forall \gamma > 0, t < \infty, \exists k < \infty$ such that if C is t-sparse, linear and has γ -large-distance then C is k-locally testable.

Our Results (contd.)

- Linear? C linear if $x, y \in C \Rightarrow x + y \in C$
- **Sparse?** C is t-sparse if $|C| \leq n^t$
- Large Distance?

C has γ -large-distance if $\delta(C) \geq \frac{1}{2} - n^{-\gamma}$

Balanced?

$$C \text{ is } \gamma \text{-balanced if } \forall x \neq y \in C, \\ \frac{1}{2} - n^{-\gamma} \leq \delta(x, y) \leq \frac{1}{2} + n^{-\gamma}.$$

Theorem 2: $\forall \gamma > 0, t < \infty, \exists k < \infty$ such that if C is t-sparse, linear and is γ -balanced then C is k-locally correctible.

March 30, 2008

Corollaries

- Reproduce old results: Hadamard, dual-BCH
- New codes:
 - Random sparse linear codes (decodable under any linear encoding).
 - dual-BCH variants $\{\operatorname{Trace}(c_1 x^{i_1} + \cdots + c_t x^{i_t}) | c_1, \dots, c_t \in \mathbb{F}_{2^{\log n}}\},\$ $i_1, \dots, i_t < \sqrt{n}$
- Nice closure properties: (Subcodes, Addition of new coordinates, removal of few coordinates)

Previously ...

- [Kaufman-Litsyn] Similar result + techniques. Main differences:
 - Required $\gamma \ge \frac{1}{2}$. So $\delta(C) \ge \frac{1}{2} \frac{1}{\sqrt{n}}$
 - Worked only for balanced codes.
 - Only proved local testability ... no correctibility

Proof Techniques

 Modifying (simplifying? extending?) the proofs of [Kaufman Litsyn '05] (some ideas go back to [Kiwi 95]).

 Buzzwords: Duality, MacWilliams Identities, Krawtchouk Polynomials, Johnson bounds.

Duality & Testing

Dual of a Code:

 $C^{\perp} = \{ y \in \{0,1\}^n | \langle x, y \rangle = \bigoplus_{i=1}^n x_i y_i = 0, \forall x \in C \}$

• Canonical (only) test for membership in C: Pick low-weight $y \in C^{\perp}$ Test $\langle r, y \rangle = \bigoplus_{i \in 1_y} r_i = 0$ wt $(y) = k \Rightarrow$ Test is k-local • $t(y) = |1_y|$

• Canonical self-corrector: To compute c_i , pick low-weight y s.t. $y_i = 1$ output $\bigoplus_{j \in 1_y - \{i\}} r_j$

Questions:

Does C^{\perp} even have any low-weight codewords?

- Is the distribution of non-zero coords. of low-weight y s.t. $y_i = 1$ roughly uniform?
- How to even analyze the test?

Path to answers

 Need "weight distribution" of some codes: Weight distribution: C₀,...,C_n, where C_i = # codewords in C of weight i.

- Testing + Correcting: Weight distribution of C^{\perp} Specifically C_k^{\perp}
- Testing: [Kiwi, KL] Also need weight distribution of $(C \cup (C+r))^{\perp}$. Specifically, $(C \cup (C+r))_k^{\perp}$

 Correcting: [New]
 Wt. distribution of C⁻ⁱ, C^{-{i,j}} (C⁻ⁱ: C with *i*th coordinate deleted.)

Dual Weight Distribution?

- MacWilliams Identities: Can compute weight distribution of dual from weight distribution of primal ... exactly!
- Don't have primal distribution exactly ... Can coarse information suffice?
 - [Kiwi] Manages to compute primal info. exactly.
 - [Kaufman-Litsyn] Find out a lot about primal distribution.
 - [Our hope] Less precise info. sufficient.

MacWilliams Identities: Precise Form

Krawtchouk Polynomials

$$P_k(i) = \sum_{j=0}^k (-1)^j {i \choose j} {n-i \choose k-j}$$

Dual Weight Distribution

$$C_k^{\perp} = \frac{1}{|C|} \cdot \sum_{i=0}^n P_k(i) C_i$$

Double summation! Many negative terms. Cancellations?

March 30, 2008

Primal Weight Distribution (Balanced)

Krawtchouk Polynomial (k odd)

Krawtchouk Polynomial (k odd)

Low-weight codewords in dual

Can conclude: constant weight codewords exist.

$$C_k^{\perp} \approx \frac{1}{|C|} \cdot {\binom{n}{k}} \cdot (1 \pm n^{t-\gamma k})$$

• Very tight bound (If $k \gg t/\gamma$)

Leads to self-corrector

Analysis of self-corrector

• Need to understand $C_{k,i}^{\perp} = |\{y \in C^{\perp} | \operatorname{wt}(y) = k \text{ and } y_i = 1\}|$

- New Code: $C^{-i} = C$ with *i*th coordinate deleted. = $\{\pi(y) | y \in C\}.$
- Claim: $(C^{-i})^{\perp} = \{\pi(y) | y \in C^{\perp} \text{ s.t. } y_i = 0\}$ and so $C_{k,i}^{\perp} = C_k^{\perp} - (C^{-i})_k^{\perp}$
- But C^{-i} is sparse and balanced and so can determine $(C^{-i})_k^{\perp}$

Analysis of self-corrector (contd.)

Plugging in bounds:

$$\Pr_{y \in C_k^{\perp}}[y_i = 1] \approx k/n(1 \pm n^{-c})$$

Similar calculations with $C^{-i,j}$ yield:

Events $y_i = 1$ and $y_j = 1$ roughly independent if $y \leftarrow C_k^{\perp}$.

Conclude: Self-corrector computes C_i correctly w.p. $\geq 1 - O(\epsilon \cdot t/\gamma)$ from ϵ -corrupted received word.

Analysis of Tester (balanced case)

• Easy fact (from MacWilliams Identities) span $(C, r)_k^{\perp} = \frac{1}{2} \cdot C_k^{\perp} + \frac{1}{2} \cdot \frac{1}{|C|} \cdot \sum_{i=0}^n P_k(i) \cdot (C+r)_i$

Suffices to analyze second term. But what does the weight distribution of C + r look like? and how does $P_k(\cdot)$ interact with this?

March 30, 2008

Weight Distribution of C+r (vs. C)

i

March 30, 2008

Weight Distribution of C+r (vs. C)

March 30, 2008

Inner Product with Krawtchouk's

Inner Product with Krawtchouk's

More Bounds

Some weak Krawtchouk bounds:

- 1. $P_k(\epsilon n) \leq (1-\epsilon)P_k(0)$ (the "helpful" part)
- **2.** $P_k(i) \le (n-2i)^k/k!$

(For i in our range. Useful to limit the "hurt")

Bound 2. not sufficient to bound the "hurt" ... but can combine with "Johnson bound"

 Johnson Bound: Code of relative distance 1/2 - \(\tau\) can not have too many codewords in ball of radius 1/2 - \(\sqrta\)\(\tau\)

March 30, 2008

Putting all the bounds together

Can conclude:

$$\frac{1}{|C|} \cdot \sum_{i=0}^{n} P_k(i)(C+r)_i \le (1 - \Omega(\epsilon)) \cdot C_k^{\perp}$$

Implies test rejects ϵ -corrupted codeword with probability $\Omega(\epsilon)$.

Unbalanced codes?

Many things breakdown ...

• E.g., If $\overline{1} \in C$ then $C_k^{\perp} = 0$ for odd k.

Our approach:
 Step 1: Codes of max. wt. ≤ 5/8n (weakly balanced).

Step 2: Reduce general case to weakly balanced case.

Weakly balanced codes

• Can now prove $C_k^{\perp} > 0$ for odd k.

- But can't get a precise bound on C_k^{\perp} .
- Instead, we bound $C_k^{\perp} (\operatorname{span}(C, r))_k^{\perp}$ directly;
 - Show that contribution of any word to both terms is roughly the same (Uses some properties of P_{k-1}(·).)
 - Show that contribution of the coset leader drops by $\Omega(\epsilon)$ -factor.

Reducing general codes to w.b. codes

• Write $C = \tilde{C} + \operatorname{span}(x, y, z)$ where \tilde{C} is weakly-balanced.

• Test if $\exists u \in \operatorname{span}(x, y, z)$ such that $r + u \in \tilde{C}$.

 Yields tester for all binary, linear, sparse, highdistance codes.

Conclusions/Questions

- Simpler proof for random codes by Shachar Lovett, Or Meir.
- Self-correct imbalanced codes?
- Are random sparse codes locally list-decodable?
- Is this just a logarithmic saving in locality?
- Are there other ways to pick broad classes of testable codes (at "random")?