Local Testability and Decodability
of Sparse Linear Codes

Madhu Sudan
MIT

Joint work with Tali Kaufman (1AS & MIT).

March 30, 2008 Locality from Sparsity 1

= Data getting ever-larger

s Need algorithms that can infer “global”
properties from “local” observations ...

= Led to
m Property testing, Sublinear-time algorithms

= Common themes:
m Oracle-access to input, implicit output.

s Answers of the form: “input close to having
property”

March 30, 2008 Locality from Sparsity

s Code: C C{0,1}" image of E : {0,1}* — {0,1}"

= Distance ...
m ... between sequences: d(z,y) = Pr;[x; # v
s ... of code: 0(C) = mingycc{d(z,y)}

= Algorithmic Problems:
s Encode: Compute E

m Detect Errors: Given r € {0,1}",isr € C?
Or dz € C' s.t. i(r,x) < €?

= Decode: Given r € {0,1}" s.t. dJx € C
with (7, z) < €, compute =x.

March 30, 2008 Locality from Sparsity

= Encoding: Can not be performed “locally”

s Single bit change in input should alter constant
fraction of output!

= Testing, Decoding, Error-correcting ... can be
performed locally. Furthermore

s They are very natural problems.

s Have many applications in theory (PCP, PIR,
Hardness amplification).

m Lots of interesting effects are achievable.

March 30, 2008 Locality from Sparsity 4

s Common framework: Fixed code C € {0,1}";

Oracle access to r € {0,1}"; Only k queries allowed.

m Local Testing: accept if r € C
reject (with Q(1) prob.) if d(r,C) > e.

m Local Self-Correction:

Promise: dc € C' s.t. d(c,r) <e.
Given i € [n|, compute c¢;

s Local Decoding:
Setup: Fix E : {0,1}* — {0,1}" s.t. C = Image(E).
Promise: Im s.t. 6(E(m),r) < e.
Given i € k], compute m;

March 30, 2008 Locality from Sparsity 5

= Encoding: Given m € {0,1}°¢" and z € {0, 1}°¢"
E(m)x — Zi(fln mzazz(mod 2)

= Test: Accept iff ry, +r, =ryqy
= Correction: Given z € {0,1}°¢", pick y € {0,1}°8™
uniformly and output ry4, — 7

= Decoding:

1th bit of message is e;th coordinate of its encoding.

March 30, 2008 Locality from Sparsity

= Local Decoding/Self-Correcting:

s [Beaver-Feigenbaum], [Lipton], [Blum-Luby-
Rubinfeld] — instances of Local Decodability.

m [Katz-Trevisan] — first definition.
m ...
= Locally Testable Codes:

s [Blum-Luby-Rubinfeld], [Babai-Fortnow-Lund]
— first instances.

s [Arora], [Rubinfeld-Sudan], [Spielman],
[Goldreich-Sudan] — definitions.

March 30, 2008 Locality from Sparsity

= Basic codes: Algebraic in nature.
s Analysis:
= Decoding: typically simple, uses algebra.
= Testing: more complex.

= Better codes: Careful compositions of basic codes.
m EXxception: [Meir '08] — not algebraic.

= Questions:
m Do we need all this algebra/careful constructions?

s Can we derive local algorithms from “classical”
parameters?

m Can randomly chosen codes have local algorithms?

March 30, 2008 Locality from Sparsity

= Theorem (Informal): Every “sparse”, “linear”
code of “large distance” is locally testable,
correctible.

m Linear? (Clinearifz,yc C=z+ycC
s Sparse? C is t-sparse if |C| < n'
s Large Distance?

C has v-large-distance if 6(C) > z — n™"
Theorem 1: Vv > 0, t < 0o, dk < oo such that
if C' is t-sparse, linear and has ~-large-distance

then C' is k-locally testable.

March 30, 2008 Locality from Sparsity

Linear? C linearifz,ye C=z+yecC
Sparse? C is t-sparse if |C] < n*
Large Distance?

C' has vy-large-distance if 6(C') >
Balanced?

C is y-balanced if Vx #£ y € C,

% —n 7 <d(z,y) < % +n7.

1 _ . —
5 — 1

Theorem 2: Vy > 0, t < oo, dk < oo such that
if C' is t-sparse, linear and is y-balanced
then C is k-locally correctible.

March 30, 2008 Locality from Sparsity

10

= Reproduce old results: Hadamard, dual-BCH
= New codes:

s Random sparse linear codes (decodable under
any linear encoding).

s dual-BCH variants |
{Trace(cix™ + - - c;x't)|c1, ..., ¢t € Fologn },

il,...,’it<\/ﬁ

= Nice closure properties: (Subcodes, Addition of new
coordinates, removal of few coordinates)

March 30, 2008 Locality from Sparsity 11

s [Kaufman-Litsyn] Similar result + techniques.
Main differences:

» Required 7 2 5. Sod(C) > z— \/Lﬁ
s Worked only for balanced codes.
s Only proved local testability ... no correctibility

March 30, 2008 Locality from Sparsity 12

= Modifying (simplifying? extending?) the proofs of
[Kaufman Litsyn '05] (some ideas go back to
[Kiwi 95]).

= Buzzwords: Duality, MacWilliams ldentities,
Krawtchouk Polynomials, Johnson bounds.

March 30, 2008 Locality from Sparsity 13

= Dual of a Code:
C* = {y € {0,1}"|(z,y) = D, iys = 0,Vz € C}

= Canonical (only) test for membership in C:

Pick low-weight y € C'+ :
Test (r,y) = @iely r; =0 1, = {i|ly; = 1}
wi(y) = [1y]

wt(y) = k = Test is k-local

= Canonical self-corrector:
To compute c;, pick low-weight y s.t. y; =1

output P,cq (i) 7

March 30, 2008 Locality from Sparsity 14

s Does C+ even have any low-weight codewords?

= Is the distribution of non-zero coords. of
low-weight y s.t. y; = 1 roughly uniform?

® How to even analyze the test?

March 30, 2008 Locality from Sparsity

15

= Need “weight distribution” of some codes:
Weight distribution: Cy,...,C,,, where

C; = # codewords in C' of weight 1.

= Testing + Correcting: Weight distribution of C'+
Specifically C;-
s Testing: [Kiwi, KL]
Also need weight distribution of (C' U (C + r))=.
Specifically, (CU (C +7));

= Correcting: [New]
Wt. distribution of C—%, C'~ 1%}
(C"i : C' with ith coordinate deleted.)

March 30, 2008 Locality from Sparsity

16

= MacWilliams ldentities: Can compute weight
distribution of dual from weight distribution of
primal ... exactly!

= Don’t have primal distribution exactly ... Can
coarse information suffice?

s [Kiwi] - Manages to compute primal info.
exactly.

s [Kaufman-Litsyn] — Find out a lot about primal
distribution.

m [Our hope] — Less precise info. sufficient.

March 30, 2008 Locality from Sparsity 17

= Krawtchouk Polynomials

. k (1) (M—1
Pk(z) — ijo(_l)j (J) (k—j)
= Dual Weight Distribution

:% Zz OPIf()

= Double summation! Many negative terms.

Cancellations?

March 30, 2008 Locality from Sparsity

18

Co=1

March 30, 2008

Locality from Sparsity

19

Lo ,I/Egjznl—fy .. n
Ci
I 500000004 BT T LN nk/2
Zeroes 5 Vkn
—p
March 30, 2008 Locality from Sparsity 20

Lo Zeginl—fy .. n

4

....... 0.0 n(]‘_’)/)k
I 500000004 BT T LN nk/2

..

March 30, 2008 Locality from Sparsity 21

= Can conclude: constant weight codewords exist.
1 ~ 1 n t—yk

= Very tight bound (If k£ > t/7)

m Leads to self-corrector

March 30, 2008 Locality from Sparsity

22

= Need to understand
Ct; =y € CHlwt(y) = k and y; = 1}]

= New Code:C~* = C with ith coordinate deleted.

= {n(y)ly € C}.
= Claim:(C™ 9t = {n(y)|ly € C+ s.t. y; = 0}
and so C’kfi = Ckl — (C_i),ﬁ

= But C* is sparse and balanced
and so can determine (C~°);

March 30, 2008 Locality from Sparsity

23

= Plugging in bounds:
Prycorlyi =1 = k/n(l£n°)

= Similar calculations with C~*/ yield:
Events y; = 1 and y; = 1 roughly independent
if y < C-.

» Conclude: Self-corrector computes C;
correctly w.p. > 1 —0O(e-t/vy) from e-corrupted
received word.

March 30, 2008 Locality from Sparsity

24

= Need to analyze span(C, T);ﬁ
where span(C,r) = CU (C + r)
= Specifically, want: Pr,co. [y ¢ span(C,r);;] = Qe).
& span(C, 1) < (1 —Q(e)) - Cif

s Easy fact (from MacWilliams lIdentities)

span(C,r)y = 5 - O + 3 - o7 - Limo Pr(d) - (C + 1)

s Suffices to analyze second term. But what does
the weight distribution of C + r look like? and
how does Pi(-) interact with this?

March 30, 2008 Locality from Sparsity 25

Co=1

March 30, 2008

Locality from Sparsity

26

1€ 5 nt="
i€ 2+ (en+n'7)
Ci
EN)

March 30, 2008 Locality from Sparsity 27

_ Zz C; <n'

Don’'t make a

’ ¢ :;;:::%A..-/..,. difference

.

° *
OOOOO [*
® SHEHA ®
LN]
° L]
0 a:'i' e @
. " o e *
. (X ...0 S
* X
vge t oo
foetn

Non-positive

March 30, 2008 Locality from Sparsity 28

Inner Product with Krawtchouk’s

March 30, 2008 Locality from Sparsity 29

= Some weak Krawtchouk bounds:

1. Pi(en) < (1 —€)P(0) (the “helpful” part)

2. P(i) < (n— 2i)% /! (For i in our range.
Useful to limit the “hurt”)

= Bound 2. not sufficient to bound the “hurt” ... but
can combine with “Johnson bound”

= Johnson Bound:
Code of relative distance 1/2 — 7 can not have too
many codewords in ball of radius 1/2 — /7

March 30, 2008 Locality from Sparsity 30

= Can conclude:

& Pu(i)(C)i < (1 Q(e)) - O

= Implies test rejects e-corrupted codeword with
probability £2(¢).

March 30, 2008 Locality from Sparsity

31

= Many things breakdown ...

= E.g.,If 1 € C then Cif =0 for odd k.

= Our approach:

s Step 1: Codes of max. wt. <5/8n
(weakly balanced).

m Step 2: Reduce general case to weakly balanced case.

March 30, 2008 Locality from Sparsity 32

= Can now prove Cj > 0 for odd k.
= But can’t get a precise bound on C,j

= Instead, we bound Ckl - (span(C, T))ﬁ directly;

s Show that contribution of any word to both
terms is roughly the same (Uses some
properties of Px_1(-).)

s Show that contribution of the coset leader
drops by €(e)-factor.

March 30, 2008 Locality from Sparsity

33

~

s Write C =C + span(z,y, z)where C is weakly-
balanced.

= Testif 3 u € span(z,y, z) such that r +u € C.

= Yields tester for all binary, linear, sparse, high-
distance codes.

March 30, 2008 Locality from Sparsity

34

= Simpler proof for random codes by Shachar
Lovett, Or Meilr.

s Self-correct imbalanced codes?

= Are random sparse codes locally list-decodable?

= Is this just a logarithmic saving in locality?

= Are there other ways to pick broad classes of
testable codes (at “random™)?

March 30, 2008 Locality from Sparsity

	Local (Sublinear-time) Algorithmics
	Error-Correcting Codes
	Local Algorithmics in Coding
	Local Algorithmic Problems
	Example: Hadamard Codes
	Brief History
	Constructions of Locally X-able Codes
	Our Results
	Our Results (contd.)
	Corollaries
	Previously …
	Proof Techniques
	Duality & Testing
	Questions:
	Path to answers
	Dual Weight Distribution?
	MacWilliams Identities: Precise Form
	Primal Weight Distribution (Balanced)
	Krawtchouk Polynomial (k odd)
	Krawtchouk Polynomial (k odd)
	Low-weight codewords in dual
	Analysis of self-corrector
	Analysis of self-corrector (contd.)
	Analysis of Tester (balanced case)
	Weight Distribution of C+r (vs. C)
	Weight Distribution of C+r (vs. C)
	Inner Product with Krawtchouk’s
	Inner Product with Krawtchouk’s
	More Bounds
	Putting all the bounds together
	Unbalanced codes?
	Weakly balanced codes
	Reducing general codes to w.b. codes
	Conclusions/Questions

