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= Distance: 4(f,g) = Przep[f(z) # g(z)]
0(f, F) = minger{d(f,9)}
fregifo(f,g) <e
= Definition:
F is (k,€,d)-locally testable if
d a k-query tester 1’ s.t.
feF = T accepts w.p. >1—¢
6(f,F)>6= T rejects w.p. > e.

= Notes: k-locally testable implies de, 0 > 0
locally testable implies 3k = O(1)
One-sided error: Accept f € F w.p. 1
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s [Blum,Luby,Rubinfeld — S’90]

s Linearity + application to program testing
s [Babal,Fortnow,Lund — F'90]

s Multilinearity + application to PCPs (MIP).
s [Rubinfeld+S.]

m Low-degree testing + Formal Definition
s [Goldreich,Goldwasser,Ron]

s Graph property testing.
= Since then ... many developments

s Graph properties

m Statistical properties

s More algebraic properties
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= More Properties
s Low-degree (d < q) functions [RS]
s Moderate-degree (q < d < n) functions
m g=2: [AKKLR]
s General g: [KR, JPRZ]
s Long code/Dictator/Junta testing [PRS]
s BCH codes (Trace of low-deg. poly.) [KL]
m All nicely “invariant” properties [KS]
= Better Parameters (motivated by PCPSs).

m #gueries, high-error, amortized query
complexity, reduced randomness.
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(Also usually) R is a field

Property = Linear subspace.

F=9 g ¢

‘Algebraic Property = Code! (usually)

12\ “c
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Universe

{f:D — R}

Must accept
Ok to accept

st reject w.h.p.



= Implications of linearity
s Constraints, Characterizations, LDPC structure
s One-sided error, Non-adaptive tests [BHR]

= Redundancy of Constraints
m Tensor Product Codes

= Symmetries of Code
m Testing affine-invariant codes

m Yields basic tests for all known algebraic
codes (over small fields).
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s Generic adaptive test = decision tree.
0 1

(®

e Pick path followed by random g € F.
e Query f according to path.

e Accept iff f on path consistent with some h € F.

e Yields non-adaptive one-sided error test for linear F.
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e Say test queries ¢1,...,%%
accepts (f(ir),..., f(i)) € V # F¥

® (i1,...,1%; V) = Constraint 1
Every f € JF satisfies it. 20

in V?
o If every f ¢ F rejected
W. positive prob.
then F characterized
by constraints.

e Like LDPC Codes! D
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e Constraints:
Coy = (z,y,z+y;V)|x,y € F* where
V ={(a,b,a+ b)|a,b € F}

e Characterization: X O .
N V?

f is linear iff y ©
Ve,y, Oy, satisfied

X+Y
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= [Ben-Sasson, Harsha, Raskhodnikova]

= There exist families J characterized by k-local
constraints that are not o(|D])-locally testable.

= Proof idea: Pick LDPC graph at random ...
(and analyze resulting property)
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= Constraints too minimal.
s Not redundant enough!

s Proved formally in [Ben-Sasson,
Guruswami, Kaufman, S., Viderman]

= Constraints too asymmetric.

s Property must show some symmetry to be
testable.

m Not a formal assertion ... just intuitive.
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= E.g. Linearity Test:
— Q(D?) constraints on domain D

s Standard LDPC analysis:
— Dimension(F) ~ D — m for m constraints.
— Requires #constraints < D.
— Does not allow much redundancy!

= What natural operations create redundant local
constraints?

m Tensor Products!
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= Tensor Product: F X ¢
= { Matrices such every row in F

and every column in G }

= Redundancy?
Suppose F, G systematic

First £ entries free
rest determined by them.

B Free

B F determined
B ¢ determined
[l determined twice, by F and G!
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= Natural test:
s Given Matrix M
m Test if random row Iin F
m Test If random column in G

= Claim:

m If F, G codes of constant (relative) distance;
then if test accepts w.h.p. then M is close to
codeword of F X G

= Yields O(vn) local test for codes of length n.

s Can we do better? Exploit local testability of F,
G”?
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= Natural test (if F,G locally testable):
s Given Matrix M
= Hestetatl eandoMonowncloseocto F
s Testttrat cahldo m coldmmenciosentb G

= Suppose M close on most rows/columns to F, G. Does this
imply M is close to F x G?

m Generalizes test for bivariate polynomials. True for F, G

= class of low-degree polynomials. [BFLS, Arora+Safra,
Polishchuk+Spielman].

s General question raised by [Ben-Sasson+S.]
m [P. Valiant] Not true for every F, G !
s [Dinur, S., Wigderson] True if F (or G) locally testable.
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= Robust testability allows easy induction
(essentially from [BFL, BFLS]; see also [Ben-
Sasson+S.])

o et ™ = n-told tensor of F. /

-

e Given f: D" — F /

Natural test: Pick random axis-parallel line
verify fline € F
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= Unnatural test (for F X F X F):
s Given 3-d matrix M:
s Pick random 2-d submatrix.
m Verify it is close to F x F

s Theorem [BenSasson+S., based on Raz+Safra]:
Distance to F x F X F proportional to average
distance of random 2-d submatrix to F x F.

= [Meir]: “Linear-algebraic” construction of Locally
Testable Codes (matching best known
parameters) using this (and many other
Ingredients).

April 1, 2009 Algebraic Property Testing @ DIMACS

21



= Redundant constraints necessary for testing
[BGKSV]

= How to get redundancy?
m Tensor Products

z m Sufficient to get some local testability

s Invariances (Symmetries)
— m Sufficient?

s Counting (See Tali’s talk)
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Testing by symmetries
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= Invariances (Automorphism groups):

For permutation 7 : D — D, F is w-invariant if
f € F implies forw € F.

Aut(F) = {m | F is m-invariant }

Forms group under composition.

= Hope: If Automorphism group is “large” (“nice”),
then property is testable.
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= Majority:
— Aut group = Sp (full group).
— Easy Fact: If Aut(F) = Sp then
F is poly(R, 1/€)-locally testable.

= Graph Properties:
— Aut. group given by renaming of vertices

— [AFNS, Borgs et al.| implies reqular properties
with this Aut group are testable.

= Algebraic Properties: What symmetries do they
have?
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= Properties:
D =TF", R =TF (Linearity, Low-degree, Reed-Muller)

Or D=KD2OF, R=F (Dual-BCH) (K,TF finite fields)
= Automorphism groups?

Linear transformations of domain.
w(x) = Ax where A € F*"*"™  (Linear-Invariant)

Affine transformations of domain.
w(x) = Ax + b where A € F*"*™ b e F* (Affine-Inv.)

= Question: Are Linear/Affine-Inv., Locally
Characterized Props. Testable? ([Kaufman + S.])
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= Unifies previous studies on Alg. Prop. Testing.
(And captures some new properties)
= Nice family of 2-transitive group of symmetries.

s Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] :
Linear code with k-local constraint and 2-
transitive group of symmetries must be testable.
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= Theorem 1: F C {K"™ — F} linear, linear-invariant,
k-locally characterized
implies F is f(K, k)-locally testable.

s Theorem 2: F C {K"™ — F} linear, affine-invariant,
has k-local constraint
implies F is f(K, k)-locally testable.
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— Linear functions from F" to F.
— Polynomials in F|zq,...,z,] of degree at most d

— Traces of Poly in K|z, ..., z,] of degree at most d

— (Traces of) Homogenous polynomials of degree d

— F1 + Fo, where F;, Fo are linear-invariant.
Polynomials supported by degree 2, 3,5, 7 monomials.

April 1, 2009 Algebraic Property Testing @ DIMACS 29



— Precise locality not yet understood:
Depends on p-ary representation of degrees
Example: F supported by monomials zP TP’
behaves like degree two polynomial

— For affine-invariant family dictated (coarsely)
by highest degree monomial in family

— For some linear-invariant families,
can be much less than the highest degree monomial.
Example: K=F =F,; F = F; + F»
JF1 = poly of degree at most 16
Fo = poly supported on monomials of degree 3 mod 6.
Degree(F) = Q(n); Locality(F) < 49.
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Property Testing from
INnvariances
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— JF has single-orbit characterization if
1 a single constraint C' = (x1,...,xx; V') such that
{C o T} cau(r) characterize F.

Theorem: If F has single-orbit characterization by
a k-local constraint (with some restrictions)
then it is k-locally testable.

Rest of talk: Analysis (extending BLR)
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e Have f s.t. Pr, ,[f(z)+ f(y) # f(z+y)] =0 < 1/20.
Want to show f close to some g € F.

e Define g(x) = most likely, { f(z +y) — f(y)}-
e If f close to F then g will be in F and close to f.

e But if f not close?” g may not even be uniquely defined!

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove most likely is overwhelming majority.

— Step 2: Prove that g is in F.
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e Define g(x) = most likely ,{f(z +y) — f(y)}.

Claim: Pr,|f(z) # g(x)] < 20

— Let B = {z|Pry[f(z) # f(z +y) — f(y)]

— Pr, [linearity test rejects |z € B] > 2

= Pr,|z € B] <2§

— If £ € B then f(x) = g(x)
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D

e Define g(x) = most likely ,{f(z +y) — f(y)}.

e Suppose for some x, 4 two equally likely values.
Presumably, only one leads to linear x, so which one?

e If we wish to show ¢ linear,
then need to rule out this case.

Lemma: V z, Pr, ,[Vote,(y) # Vote,(z))] < 49
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/-
e Define g(z) = most likely ,{f(z + y)

Lemma: V x, Pry, ,[Vote,(y) # Vote,(z))] < 44

? fly) |—flz+y)

f(2) fly+2) |—fly+ 22)|«—

~fo+ 2) |-y + 2) s 220l

Prob. Row/column I I

sum non-zero < 9.
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Lemma: If § < 4

550 then Vx,y, g(z) +g(y) = g(z +y)

Prob. Row/column

9(z) 9(y) —9(z+y) sum non-zero < 4¢.
f(2) fly+2) |—f(y + 22)|e—
—f(a: e z) _f(zy + z) flz + 2y + 22) |t
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o fst. Prp[(f(L(zy),...,f(L(xk))) e V] =60 < 1.

e Define g(z) = o that maximizes
Pripip@y)=s} (0, [(L(22)), ..., f(L(zy))) € V]

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove “most likely” is overwhelming majority.

— Step 2: Prove that g is in F.
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e Define g(z) = « that
Prir|n(a)=23 (5T (L(22)), -, f(L(zk))) € V]

Lemma: V x, Prp x[Vote, (L) # Vote,(K))] < 2(k — 1)

r |L(z2) “‘ L(zy)
K (z2)
»
K (zy)
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v |L2) ()
K(Q?Q) M
PY L
K (zx) =

P T

e Want marked rows to be random constraints.

e Suppose I1,..., Iy linearly independent;
and rest dependent on them.



s Fill with random entries

m Fill so as to form constraints

Tensor magic implies final
columns are also constraints.

K(x2) =
K (z4) —

1 I.su‘L T

pose 1, ...,Zy linearly independent;
April 1, 2009 and rest dependent on them. 44
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= Affine invariance + single-orbit characterizations
Imply testing.

= Unifies analysis of linearity test, basic low-degree
tests, moderate-degree test (all A.P.T. except
dual-BCH?)
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= Didn’t get to talk about
m PCPs, LTCs (though we did implicitly)
s Optimizing parameters
s Parameters

= In general

s Broad reasons why property testing works
worth examining.

s Tensoring explains a few algebraic examples.
s Invariance explains many other algebraic ones.

(More about invariances In
[Grigorescu,Kaufman,S. '08], [GKS’09])
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Concluding thoughts - 2

= Invariance:

m Seems to be a nice lens to view all property
testing results (combinatorial, statistical,
algebraic).

s Many open questions:

m What groups of symmetries aid testing?
m What additional properties needed?
m Local constraints?
m Linearity?
m Does sufficient symmetry imply testability?

= Give an example of a non-testable property with a k-
single orbit characterization.
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Thank You!
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