Invariance in Property Testing

Madhu Sudan Microsoft/MIT

Modern challenge to Algorithm Design

- Data = Massive; Computers = Tiny
 - How can tiny computers analyze massive data?
 - Only option: Design sublinear time algorithms.
 - Algorithms that take less time to analyze data, than it takes to read/write all the data.
 - Can such algorithms exist?

Yes! Polling ...

- Is the majority of the population Red/Blue
 - Can find out by random sampling.
 - Sample size

 margin of error
 - Independent of size of population

Other similar examples: (can estimate other moments ...)

Recent "novel" example

- Can test for homomorphisms:
 - Given: f: G → H (G,H finite groups), is f essentially a homomorphism?
 - Test:
 - Pick x,y in G uniformly, ind. at random;
 - Verify $f(x) \cdot f(y) = f(x \cdot y)$
 - Completeness: accepts homomorphisms w.p. 1(Obvious)
 - Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 - (Not obvious)

Property Testing

- □ [Bformallyby Rubinfeld '90]
 [Rubinfeldtl\$" 'ខេះ។ '96]ata" satisfies some
 [Gបុង្គេចelate GoldwæssenRen '96]
- Formally:
 - Data: f: D → R
 - Property: $P \subseteq \{g: D \rightarrow R\}$
 - Efficient: f given as a $x \rightarrow f$ $\rightarrow f(x)$
 - Tester should make few queries to f.
 - Essentially:
 - Accept f ∈ P w.p. 1;
 - Reject f "far" from P w.h.p.

Distance: Far/Close

Distance = (normalized) Hamming distance

$$\bullet \delta(f,g) = Prob_{x \in \mathcal{D}} [f(x) \neq g(x)]$$

- (q, ϵ, δ) -tester for P:
 - Makes q queries to f.
 - Accepts w.p. probability ≈ 1 if $f \in P$
 - Reject w.p. probability ϵ if $\delta(f,P) \geq \delta$
- Ideally: q = O(1) and $\epsilon(\delta) > 0$, $\forall \delta > 0$.

[BLR] Lemma

- Let Rej(f) = Prob_{x,y∈G} [f(x) · f(y) ≠ f(x·y)]
- Lemma: If Rej(f) < 2/9 then $\delta(f, Hom) = O(Rej(f))$.

- Motivated by Program Checking:
 - E.g. to check if (complex) program multiplies matrices correctly:
 - Verify it is linear in each argument
 - Use this to check correctness.

Independently [Babai Fortnow Lund '90]

- Multilinearity testing: Is a function f: F^m → F essentially a degree 1 polynomial in each of the m variables?
 - Let Rej(f) = Prob_ℓ [f|_ℓ is not affine] where ℓ is a random axis parallel line.
 - [BFL] Lemma:
 - If Rej(f) < 1/poly(m), then δ(f, MultiLin) = O(Rej(f)).
- Implications to Complexity (precursor to "Probabilistically Checkable Proofs")

Low-degree testing [Rubinfeld, S. '92-'96]

- Is a function f: F^m → F essentially a polynomial of degree d?
 - Let Rej(f) = Prob_ℓ [f|_ℓ is not of degree d] where ℓ is a random line (not axis parallel).
 - Lemma ([ALMSS]):
 - ∃ ε > 0 s.t. ∀ d,m, sufficiently large F if Rej(f) < ε then δ(f,Degree-d) = O(Rej(f))</p>

Low-degree testing & Derivatives

- Let $f_a(x) = f(x+a) f(a)$.
- Let $f_{a,b} = (f_a)_b$
- Let Rej'(f) = E_{a,x} [I(f_{a,a,a,...} (x))]
 where I(a) = 1 if a = 0 and 0 otherwise.
- Variant of low-degree test implies that if the (d+1) st derivative in random direction usually vanishes, then f is close to a degree d polynomial

Low-degree testing (Strong form)

- Is a function f: F^m → F essentially a polynomial of degree d?
 - Let ρ(f) = Exp_ℓ [δ(f|_ℓ, Univ-Deg(d))]
 where ℓ is a random line.
 Note: Rej(f)/F ≤ ρ(f) ≤ Rej(f)
 - Lemma ([ALMSS]):
 - ∃ ε > 0 s.t. ∀ d,m, sufficiently large F
 if ρ(f) < ε
 then δ(f,Degree-d) = O(ρ(f))
 </p>

Low-degree testing (Stronger form)

- Is a function f: F^m → F essentially a polynomial of degree d?
 - Let ρ(f) = Exp_ℓ [δ(f|_ℓ, Univ-Deg(d))]
 where ℓ is a random line.
 Note: Rej(f)/F ≤ ρ(f) ≤ Rej(f)
 - Lemma (Arora + S. '97, Raz+Safra '97)
 - ∀ d,m, ε > 0, sufficiently large F if ρ(f) < 1 ε then δ(f,Degree-d) = 1 O(ε)</p>

Motivations:

- [BLR] Linearity test: Program checking
- [BFL], [ALMSS]: Probabilistically checkable proofs
 - There exists a format for writing proofs that can be checked for correctness with constant queries and constant error probability
 - Uses low-degree testing & linearity testing.

[GGR]: Should be studied for algorithm design.

1996-today

- Graph property testing [GGR, ..., Alon, Shapira, Newman, Szegedy, Fisher]
 - Almost total understanding of graphical property testing ... Regularity lemma.
 - Graph limits approach ... (Borgs, Chayes, Lovasz, Sos, Szegedy, Vesztergombi)
- Algebraic Property Testing:
 - Many stronger results
 - Fewer new properties
 - [Alon-Kaufman-Krivelevich-Litsyn-Ron, Kaufman-Ron, Jutla-Patthak-Rudra-Zuckerman]
 - Low-degree testing over small fields (F₂)

Low-degree testing over GF(2)

- [AKKLR] = Alon-Kaufman-Krivelevich-Litsyn-Ron
- Let $F = F_2$
- Is a function f: F^m → F essentially a polynomial of degree d?
 - Let Rej(f) = Prob_A [f|_A is a degree d poly]
 A is a random (d+1)-dim. affine subspace.
 U_{d+1}(f) = (½ Rej(f))^{2-d}
 - Lemma [AKKLR]
 - ∃ ε > 0 s.t. If Rej(f) < ε · 2^{-d}
 then δ(f, Degree-d) = O(Rej(f))
 (Very weak "inverse Gowers" theorem)

1996-today

- Graph property testing [GGR, ..., Alon, Shapira, Newman, Szegedy, Fisher]
 - Almost total understanding of graphical property testing ... Regularity lemma.
 - Graph limits approach ... (Borgs, Chayes, Lovasz, Sos, Szegedy, Vesztergombi)
- Algebraic Property Testing:
 - Many stronger results
 - Fewer new properties
 - [Alon-Kaufman-Krivelevich-Litsyn-Ron, Kaufman-Ron, Jutla-Patthak-Rudra-Zuckerman]
 - Low-degree testing over small fields (F₂)

My concerns ...

- Why is the understanding of Algebraic Property Testing so far behind?
 - Why can't we get "rich" class of properties that are all testable?
 - Why are proofs so specific to property being tested.
- What made Graph Property Testing so wellunderstood?
- What is "novel" about Property Testing, when compared to "polling"?

Example

- Conjecture (AKKLR '96):
 - Suppose property P is a vector space over F₂;
 - Suppose its invariant group is 2-transitive.
 - Suppose P satisfies a k-ary constraint

- Then f is $(q(k), \epsilon(k,\delta), \delta(k))$ -locally testable.
- Inspired by "low-degree" test over F₂. Implied all previous algebraic tests (at least in weak forms).

Invariances

Property P invariant under permutation (function)
 π: D → D, if

$$f \in P \Rightarrow f \circ \pi \in P$$

Property P invariant under group G if for all π ∈ G, P is invariant under π.

Invariances are the key?

- "Polling" works well when (because) invariant group of property is the full symmetric group.
- Modern property tests work with much smaller group of invariances.
- Graph property ~ Invariant under vertex renaming.
- Algebraic Properties & Invariances?

Abstracting Algebraic Properties

- [Kaufman & S.]
- Range is a field F and P is F-linear.
- Domain is a vector space over F (or some field K extending F).
- Property is invariant under affine (sometimes only linear) transformations of domain.
- "Property characterized by single constraint, and its orbit under affine (or linear) transformations."

Example: Degree d polynomials

- Constraint: When restricted to a small dimensional affine subspace, function is polynomial of degree d (or less).
 - #dimensions $\leq d/(K-1)$
- Characterization: If a function satisfies above for every small dim. subspace, then it is a degree d polynomial.
- Single orbit: Take constraint on any one subspace of dimension d/(K-1); and rotate over all affine transformations.

Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests (in weak form) with single proof.

Analysis of Invariance-based test

■ Property P given by $\alpha_1,...,\alpha_k$; $V \in F^k$

- P = {f | $f(A(\alpha_1))$... $f(A(\alpha_k)) \in V$, \forall affine A: $K^n \rightarrow K^n$ }
- Rej(f) = Prob_A [$f(A(\alpha_1))$... $f(A(\alpha_k))$ not in V]
- Wish to show: If Rej(f) < 1/k³, then δ(f,P) = O(Rej(f)).

BLR Analog

- Rej(f) = $Pr_{x,y}$ [f(x) + f(y) ≠ f(x+y)] < ϵ
- Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).
- Step 0: Show δ(f,g) small
- Step 1: ∀x, Pr_{y,z} [Vote_x(y) ≠ Vote_x(z)] small.
- Step 2: Use above to show g is well-defined and a homomorphism.

BLR Analysis of Step 1

■ Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

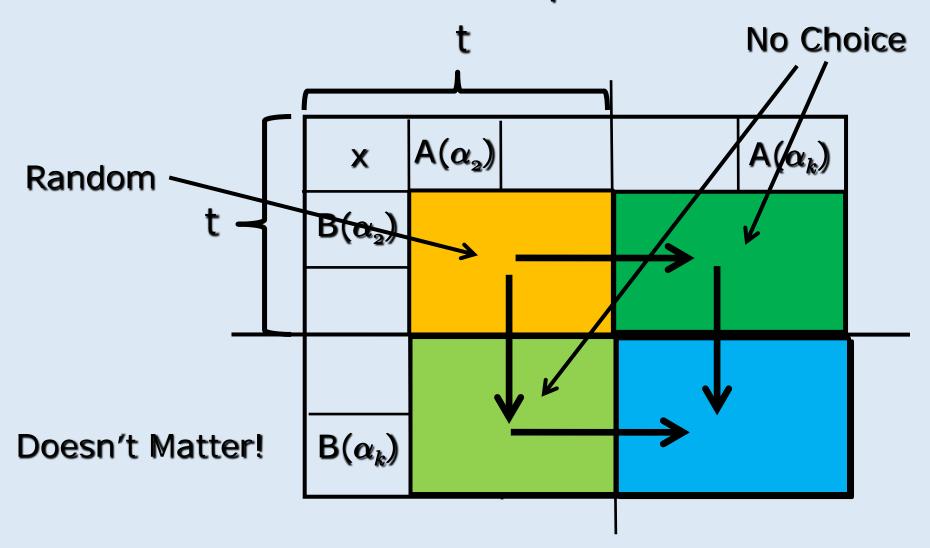
?	f(z)	- f(x+z)	
f(y)	0	-f(y)	—
- f(x+y)	-f(z)	f(x+y+z)	—

Generalization

- $g(x) = \beta$ that maximizes, over A s.t. $A(\alpha_1) = x$, $Pr_A [\beta, f(A(\alpha_2), ..., f(A(\alpha_k)) \in V]$
- Step 0: δ(f,g) small.
- $Vote_x(A) = \beta s.t. \beta$, $f(A(\alpha_2))...f(A(\alpha_k)) \in V$ (if such β exists)
- Step 1 (key): ∀x, whp Vote_x(A) = Vote_x(B).
- Step 2: Use above to show g ∈ P.

Matrix Magic?

Say $A(\alpha_1)$... $A(\alpha_t)$ independent; rest dependent



IPAM: Invariance in Property Testing

Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests with single proof.
- If P is affine-invariant over K and has a single klocal constraint, then it is has a q-single orbit feature (for some q = q(K,k))
 - (explains the AKKLR optimism)

Some results

- If P is affine-invariant over K and has a single klocal constraint, then it is has a q-single orbit feature (for some q = q(K,k))
 - (explains the AKKLR optimism)
- Unfortunately, q depends inherently on K, not just F ... giving counterexample to AKKLR conjecture [joint with Grigorescu & Kaufman]
- Linear invariance when P is not F-linear:
 - Abstraction of some aspects of Green's regularity lemma ... [Bhattacharyya, Chen, S., Xie]
 - Nice results due to [Shapira]

More results

- Invariance of some standard codes (BCH etc.):
 - Have k-single orbit property! So duals are testable. [Grigorescu, Kaufman, S.]
- Side effect: New (essentially tight) relationships between Rej_{AKKLR}(f) (=½ + Gowers norm^{2^d}) and δ(f,Degree-d). [with Bhattacharyya, Kopparty, Schoenebeck, Zuckerman]
- One hope: Could lead to "simple, good locally testable code"?
 - (Sadly, not with affine-inv. [Ben-Sasson, S.])
- Still ... other groups could be used? [Kaufman+Wigderson]

Conclusions

- Invariance seems to be a very nice perspective on "property testing" ...
- (Needs Harmonic Analysis ⁽⁹⁾)
- Hope: Can lead to interesting, new results?

Thanks