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Tiny Data

Big computers
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Small computers

Enormous Data
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Design Algorithms to process such massive data,
when there’s not enough time to read It all!

Can such algorithms exist?

m \We seem) o) 9e Using mamny/ such REUrISHIES) ...
n \What guarantees; do; they/ previde?
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Statistics:

m Classicall fieldrammed at studying RewW: te) ascertain
PROPEFUIES Gl Mmassive data With randoem samples.

£.0, Polling BEfere elections ...

Computer Science (Property Testing):
n 1990 enwWards.

n Algerthms e check datal ior inearty, multiinearnty,
loW=degree;, regulanity, uniermity, S-coleraniiy ...

(Qualitatively ... what is CS doing that is different from
Statistics?)
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Goal: “Efficiently” determine Iff some “data”
“essentially” satisfies some given “property”.

Formalism:
= Data: f : D — R given as oracle

D finite, but huge. R finite, possibly small
= Property: Given by F C {f: D — R}
= Efficiently: o(D) queries into f. Even O(1)!

= Essentially: accept if f € F
to accept if f ~ g € F.
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Distance: 6(f, g) = Priep[f(z) # g(z)]
o(f,F) = minge #{5(f, 9)}
f ~e g 1f5(f7g) < €.

Definition:

F is (q, «)-locally testable if
J a g-query tester that

accepts f € F with probability 1 — ¢
rejects f ¢ F with probability > « - 6(f, F).

Notes: g-locally testable implies da > 0
locally testable implies dg = O(1)
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Universe

{f:D — R}

Must accept
Ok to accept

Must reject w.h.p.
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Statistics = Prehistory

First “modern” Property Test: Linearity Test
[Blum, Luby, Rubinfeld *90].

Formal Definition: [Rubinfeld & S. '93-"96].
Systematic study: [Goldreich, Goldwasser, Ron '96].

1990-2009: Many non-trivial tests.
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Domain = Vector space 5
Range = Field 5

Property: JF = linear functions
ie., {f(z) =>_, a;xz;la; € Fa}
Blum;, LUy, Rulkbinield 20
Linearity is 3-query testable.

Test: Pick z,y € 5 uniformly.
Accept iff f(z) + f(y) = f(z + )
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Graph Preperty Testing:
m [he web-surler's probklem
Dees the web graph have small diameter?
IS It expanding?
Is It bipartite (essentially)?
Statistical Property Testing:
n e gampblers preklem
Are the dice unbiased?
IS there a difference between twe slot machines?
Algebraic Property Testing:
s Kepler's prehlem
Is all this data I am seeing| fitting seme: poelynemial?
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... [Alen, Shapira], [Alon, Fisher, Newman, Shapira],
[Borgs, Chayes, Lovasz, Ses, Szegedy,Vesztergombi]:

n Vionoetene graphl propertes; are: testanie.
s “Regular™ graph| properties <> testable.

[P. Valiant]
n Symmetric Statisticall Properties < testable.

IBLR,BFL,BFLS,GLRSW,RS,AKKLR,KR,JPRZ]:
n LaundRy liIst ol algelbralc properties testanie.
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Universe

(Also usually) R is a field {f:D— R}
Property = Subspace

@
_ e
-2 @
@ @ e a a Must accept

Ok to accept

| Algebraic Property = Code! (usually) 56 reject w.h.p.
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They are not global properties!
n \What dees Warren Buffett think?

They are not (very) sensitive to
Individual names

n \What dees Joe the plumber thmk?
m EVen i hersinot Joe, e pIumier,

Study “Invariances™ of
properties.
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Recall: Property = F C {D — R}

Invariances (Automorphism groups):
For permutation 7 : D — D, F is w-invariant if
f € F implies fom € F.

Aut(F) = {n | F is m-invariant}
Forms group under composition.

Hope: Iff Automorphism group Is “large™
(or “nice™), then property Is testable
at least Iff some well-studied parameter is small.
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Majority: (Pre-election polling)
— Aut group = Sp (full group).
— Easy Fact: If Aut(F) = Sp then
F is poly (R, 1/€)-locally testable.
Graph Proeperties:
— Aut. group given by renaming of vertices
— |AFNS, Borgs et al.] implies reqular properties
with this Aut group are testable.
Statistical Properties: Closed under every.
permutation of domain and range.

Algebraic Properties: What symmetries do they
have?
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Multivariate polynomials ever finite fields:
n Kepler ... (Imed p)

I = I, = finite field with p elements.
F = Fn.ap = {n-variate poly of (total) degree < d}
Example:

flx,y,2) = 3zyz + 22° — 5xz?

Polynomial of degree 3

Theorem [RS 96]: Deg. d poly = d + 2-query testable.
itd<<p
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Invariant under affine transformations:
Example:

f(z,y, 2) is a deg. d poly
= f(3x + 2y + 2,22+ 1,3z — y + 2) is also a deg d poly

So we consider affine-invariant families

A:F* 5 F" affineif A(Z) =M -Z+b
F affine-invariant if Vf € F, A aftine, fo A e F

June 09, 2009 MSR: Invariance in Property Testing 19



Affine-invariant Property JF

Additionally, Linear:
f,geF,aeF=af, f+ge F

Why? Because there’s light there ...

Additionally, Locally Constrained:

Jz1,...,z, € F™; V C F* s.t.
VieF f(x1)-- flzp) €V

Why? Because its necessary ...
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Affine functions:

F:{GO+Z?:1a'ixi agy...,0n G]F}

s Affine-invariant!
m Linear!
m Local Constraint:

r1=a,ro=b,x3 =c;xy =a+b+c
V={(a,8,7,a+B+7)|a,B,v€F}
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Theorem: F C {F"™ — [F} linear, affine-invariant,
with k-local constraint
implies F is f(IF, k)-query testable.

Other stuff:
n EXtension tor Cinear-invariant properes: (%)

n EXtension When Demain-field extends range:

n Study, LCinear=invarant Properties:
n Counterexample te AKKLER conjecture.

June 09, 2009 MSR: Invariance in Property Testing

22



Unifies most previous results on Algebraic
Property Testing.

Simpler, combined proof (than recent papers).
Many new properties: E.g.,

n Homegenous pelynemials

n Pelynemials supperted on degree 12,5,9y ..
m SEME V. high-degree pelynemials
Counterexample to

s Conjecture
Linear code with k-local constraint and 2-
transitve: group of symmetres must e
testable.

June 09, 2009 MSR: Invariance in Property Testing 23



June 09, 2009

MSR: Invariance in Property Testing

24



— F has if
1 a single constraint C' = ((x1,...,xx), V) such that
{C o T} cau(r) characterize F.

— Single orbit property applies to all known
algebraic properties, possibly with the exception

of BCH codes.

Theorem: Every linear invariant F with a k-local
characterization, has the single orbit property
under some f(k,K)-local constraint

Theorem: If F has single orbit property with
a k-local constraint (with some restrictions)
then it is k-locally testable.

June 09, 2009 MSR: Invariance in Property Testing 25



June 09, 2009

BLR (and our) analysis
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BLR: Pick z,y €r F" and check
flx)+ fly) = flz +y)

Need to show:
dg s.t. 0(f,9) < C-Pryy[f(x) + f(y) # f(z+y)]
Ours: F given by x1,..., 2k V

Pick linear/affine L : K™ — K" at random
Verify (f(L(x1)),..., f(L(zx))) €V

Need to show dg € F s.t.
0(f,9) < C-Prr[(f(L(z1)),..., f(L(zr))) €V
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e Have f s.t. Pr,,|f(z) + f(y) # f(x +y)] =6 < 1/20.
Want to show f close to some g € F.

e Define g(z) = most likely, { f(z +y) — f(y)]-
e If f close to F then g will be in F and close to f.

e But if f not close?” g may not even be uniquely defined!

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove most likely is overwhelming majority.

— Step 2: Prove that g is in F.
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e Define g(x) = most likely ,{f(z +y) — f(y)}.

Pro|f(z) # g(z)] < 20
— Let B = {z|Pry[f(z) # f(z +y) — f(y)]

— Pr, ,[linearity test rejects |z € 3] > 2

= Pr [z € B] < 2§

— If x ¢ I then f(x) = g(x)
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e Define g(x) = most likely ,{f(z +y) — f(y)}.

e Suppose for some x, 4 two equally likely values.
Presumably, only one leads to linear x, so which one?

e If we wish to show ¢ linear,
then need to rule out this case.

vz, Pry,z{ z(Y) 7 2(2))] < 46
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O
/
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e Define g(z) = most likely ,{f(z +vy) — f(y)}-

vz, Pry,Z[ 2(Y) 7 +(2))] <26

f(x+ 2) fly) |-fe+y+z) je—

Prob. Row/column I I

sum non-zero < 9.
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If§ < =

550 then Vz,y, g(z) + g(y) = g(z +y)

Prob. Row/column

9(z) 9(y) —9(z+y) sum non-zero < 4¢.
f(2) fly+2) |—f(y + 22)|e—
—f(a:+z) _f(2y+z)f(w+2y+2z)<—

June 09,[009 M[R: Invariance in PIoperty Testing 34



o fst. Prp[(f(L(z1),...,f(L(xk))) € V] =6 < 1.

e Define g(7) = o that maximizes
Priripy)=s} (0, f(L(22)), ..., f(L(xx))) € V]

e Steps:
— Step 0: Prove f close to g

— Step 1: Prove “most likely” Is overwhelming majority.

— Step 2: Prove that g is in F.
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o fst. Prp[(f(L(z1),...,f(L(xk))) € V] =6 < 1.

e Define g(7) = o that maximizes
Pripin(ey)=oy (@ F(L(22)), ..., f(L(zk))) € V]

ﬁame - be@
e Steps:

— Step 0: Prove f close to g

— Step 1: Prove “most likely™ Is everwhelming majority.

— Step 2: Prove that g is in F.
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e Define g()
Prir|0(e;)=2} (A

June 09, 2009

Ve, Prp k| = (L) # (K))] <2(k—1)6

r |L(w2) L(xzy)
K (x2)
o
K(xy)
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v |L2) ()
K(mg) M
PY L
K (zx) -

P T

e Want marked rows to be random constraints.

e Suppose x1,...,Zy linearly independent;
and rest dependent on them.



m Fill with random entries

m Fill so as to form constraints

a Linear algebra implies final
columns are also constraints.

(zk)

I

o Su pose x1, .. ﬂ?g linearly independent;
and rest dependent on them.



m Fill with random entries

m Fill so as to form constraints

a Linear algebra implies final
columns are also constraints.

(zk)

I

o Su pose x1, .. ﬂ?g linearly independent;
and rest dependent on them.



Invariance IS Important in property testing.

Linear-invariance suffices to explain many:
algebraic tests (and shows seme new ones).

Future work: What are other invariances that
lead to testability (from characterizations)?
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Thanks!
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