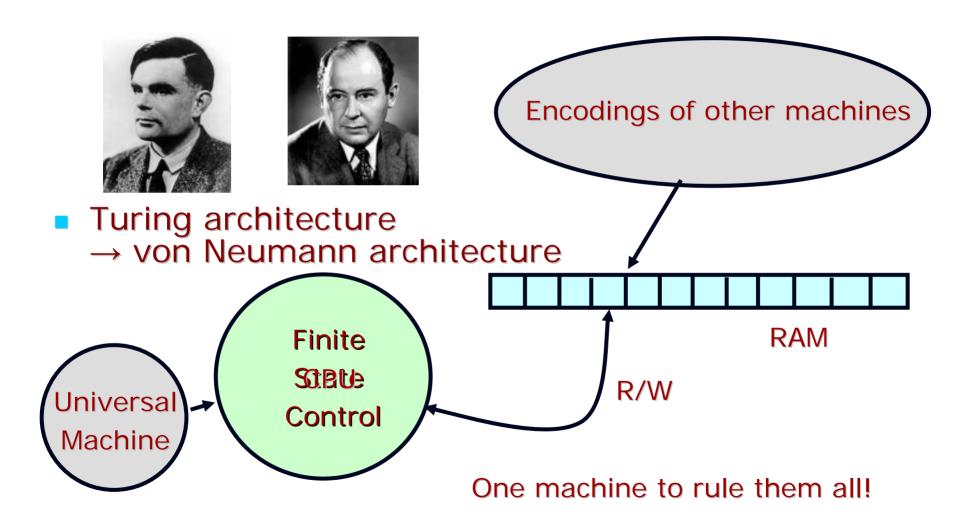
Communication & Computation

A need for a new unifying theory

Madhu Sudan MIT CSAIL

Theory of Computing



Theory of Communication

Shannon's architecture for communication over noisy channel

- Yields reliable communication
 - (and storage (= communication across time)).

Turing ← Shannon

- Turing
 - Assumes perfect storage
 - and perfect communication •
 - To get computation

- Shannon
 - Assumes computation

To get reliable storage + communication

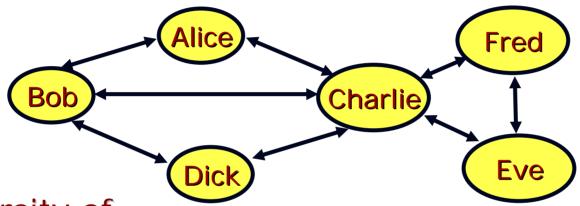
- Chicken vs. Egg?
 - Fortunately both realized!

1940s - 2000:

- Theories developed mostly independently.
 - Shannon abstraction (separating information theoretic properties of encoder/decoder from computational issues) – mostly successful.
 - Turing assumption (reliable storage/communication) – mostly realistic.

Modern Theory (of Comm. & Comp.)

Network (society?) of communicating computers



- Diversity of
 - Capability
 - Protocols
 - Objectives
 - Concerns

Modern Challenges (to communication)

- Nature of communication is more complex.
 - Channels are more complex (composed of many smaller, potentially *clever* sub-channels)
 - Alters <u>nature</u> of errors
 - Scale of information being stored/communicated is much larger.
 - Does <u>scaling</u> enhance <u>reliability</u> or decrease it?
 - The Meaning of Information
 - Entities constantly evolving. Can they preserve meaning of information?

Part I: Modeling errors

Shannon (1948) vs. Hamming (1950)

- q-ary channel:
 - Input: n element string Y over $\Sigma = \{1,..., q\}$
 - Output: n element string Ŷ over Σ= {1,..., q}
- Shannon: Errors = Random
 - $\mathbf{\hat{Y}_i} = \mathbf{Y_i} \text{ w.p. } 1 \mathbf{p}, \text{ uniform in } \mathbf{\Sigma} \{\mathbf{Y_i}\} \text{ w.p. p.}$ $p < 1 \frac{1}{q} \Rightarrow \text{ Channel can be used reliably}$ $q \to \infty \Rightarrow p \to 1$
- Hamming: Errors = Adversarial
 - p-fraction of i's satisfy Ŷ_i ≠ Y_i
 - p can never exceed ½!

Shannon (1948) vs. Hamming (1950)

- q-ary channel:
 - Input: n element string Y over $\Sigma = \{1,..., q\}$
 - Output: n element string Ŷ over Σ= {1,..., q}
- Shannon: Errors = Random
 - $\mathbf{\hat{Y}_i} = \mathbf{Y_i} \text{ w.p. } 1 \mathbf{p}, \text{ uniform in } \mathbf{\Sigma} \{\mathbf{Y_i}\} \text{ w.p. p.}$ $p < 1 \frac{1}{q} \Rightarrow \text{ Channel can be used reliably}$ $q \to \infty \Rightarrow p \to 1$
- Hamming: Errors = Adversarial
 - p-fraction of i's satisfy Ŷ_i ≠ Y_i
 - p can never exceed ½!

Which is the right model?

- 60 years of wisdom ...
 - Error model can be fine-tuned ...
 - Fresh combinatorics, algorithms, probabilistic models can be built ...
 - ... to fit Shannon Model. Corrects More Errors!
- An alternative List-Decoding [Elias '56]!
 - Decoder allowed to produce list {m₁,...,m_I}
 - "Successful" if {m₁,...,m_l} contains m.
 - "60 years of wisdom" ⇒ this is good enough!
 - [70s]: Corrects as many adversarial errors as random ones!
 Safer Model!

Challenges in List-decoding!

- Algorithms?
 - Correcting a few errors is already challenging!
 - Can we really correct 70% errors? 99% errors?
 - When an adversary injects them?
 - Note: More errors than data!
- Till 1988 ... no list-decoding algorithms.
 - [Goldreich-Levin '88] Raised question
 - Gave non-trivial algorithm (for weak code).
 - Gave cryptographic applications.

Algorithms for List-decoding

- [S. '96], [Guruswami + S. '98]:
 - List-decoding of Reed-Solomon codes.
 - Corrected p-fraction error with linear "rate".
- ['98 '06] Many algorithmic innovations ...
 - [Guruswami, Shokrollahi, Koetter-Vardy, Indyk]
- [Parvaresh-Vardy '05 + Guruswami-Rudra '06]
 - List-decoding of new variant of Reed-Solomon codes.
 - Correct p-fraction error with optimal "rate".

Reed-Solomon List-Decoding Problem

Given:

- Parameters: n,k,t
- Points: (x₁,y₁),...,(x_n,y_n) in the plane (over finite fields, actually)

Find:

All degree k polynomials that pass through t of the n points.

i.e., p such that

- $deg(p) \le k$
- $|\{i \text{ s.t. } p(x_i) = y_i\}| \ge t$

Decoding by Example + Picture [S. '96]

$$n=14; k=1; t=5$$

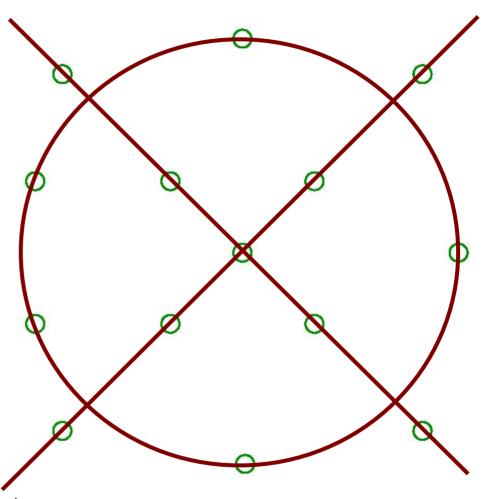
Algorithm Idea:

 Find algebraic explanation of all points.

$$x^4 - y^4 + x^2 - y^2 = 0$$

Stare at it!
Factor the polynomial!

$$(x^2 + y^2 - 1)(x + y)(x - y)$$



Decoding Algorithm

- Fact: There is always a degree 2√n polynomial thru n points
 - Can be found in polynomial time (solving linear system).
- [80s]: Polynomials can be factored in polynomial time [Grigoriev, Kaltofen, Lenstra]
- Leads to (simple, efficient) list-decoding correcting p fraction errors for p → 1

Conclusion

- More errors (than data!) can be dealt with ...
 - More computational power leads to better error-correction.

- Theoretical Challenge: List-decoding on <u>binary</u> channel (with optimal (Shannon) rates).
 - Important to clarify the right model.

Part II: Massive Data; Local Algorithms

Reliability vs. Size of Data

- Q: How reliably can one store data as the amount of data increases?
 - [Shannon]: Can store information at close to "optimal" rate, and prob. decoding error drops exponentially with length of data.
 - Surprising at the time?
 - Decoding time grows with length of data
 - Exponentially in Shannon
 - Subsequently polynomial, even linear.
 - Is the bad news necessary?

Sublinear time algorithmics

- Algorithms don't always need to run in linear time (!), provided ...
 - They have random access to input,
 - Output is short (relative to input),
 - Answers don't have usual, exact, guarantee!
- Applies, in particular, to Decoder
 - Given CD, "test" to see if it has (too many) errors? [Locally Testable Codes]
 - Given CD, recover particular block. [Locally Decodable Codes]

Progress [1990-2008]

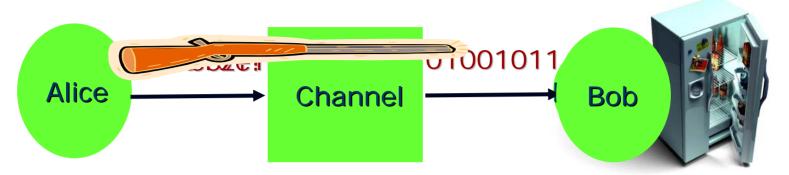
- Question raised in context of results in complexity and privacy
 - Probabilistically checkable proofs
 - Private Information Retrieval
- Summary:
 - Many non-trivial tradeoffs possible.
 - Locality can be reduced to n⁶ at O(1) penalty to rate, fairly easily.
 - Much better effects possible with more intricate constructions.
 - [Ben-Sasson+S. '05, Dinur '06]: O(1)-local testing with poly(log n) penalty in rate.
 - [Yekhanin '07, Raghavendra '07, Efremenko '08]: 3local decoding with subexponential penalty in rate.

Challenges ahead

- Technical challenges
 - Linear rate testability?
 - Polynomial rate decodability?
- Bigger Challenge
 - What is the model for the future storage of information?
 - How are we going to cope with increasing drive to digital information?

Part III: The Meaning of Information

The Meaning of Bits



- Is this perfect communication?
- What if Alice is trying to send instructions?
 - In other words ... an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?

Motivation: Better Computing

- Networked computers use common languages:
 - Interaction between computers (getting your computer onto internet).
 - Interaction between pieces of software.
 - Interaction between software, data and devices.
- Getting two computing environments to "talk" to each other is getting problematic:
 - time consuming, unreliable, insecure.
- Can we communicate more like humans do?

Some modelling

- Say, Alice and Bob know different programming languages. Alice wishes to send an algorithm A to Bob.
- Bad News: Can't be done
 - For every Bob, there exist algorithms A and A', and Alices, Alice and Alice', such that Alice sending A is indistinguishable (to Bob) from Alice' sending A'
- Good News: Need not be done.
 - From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.
- Question: What should be communicated? Why?

Ongoing Work [Juba & S.]

- Assertion/Assumption: Communication happens when communicators have (explicit) goals.
- Goals:
 - (Remote) Control:
 - Actuating some change in environment
 - Example
 - Printing on printer
 - Buying from Amazon
 - Intellectual:
 - Learn something from (about?) environment
 - Example
 - This lecture (what's in it for you? For me?)

Example: Computational Goal

- Bob (weak computer) communicating with Alice (strong computer) to solve hard problem.
- Alice "Helpful" if she can help some (weak) Bob' solve the problem.
- Theorem [Juba & S.]: Bob can use Alice's help to solve his problem iff problem is verifiable (for every Helpful Alice).
- "Misunderstanding" = "Mistrust"

Example Problems

- Bob wishes to ...
 - ... solve undecidable problem (virus-detection)
 - Not verifiable; so solves problems incorrectly for some Alices.
 - Hence does not learn her language.
 - ... break cryptosystem
 - Verifiable; so Bob can use her help.
 - Must be learning her language!
 - Sort integers
 - Verifiable; so Bob does solve her problem.
 - Trivial: Might still not be learning her language.

Generalizing

- Generic Goals
 - Typical goals: Wishful
 - Is Alice a human? or computer?
 - Does she understand me?
 - Will she listen to me (and do what I say)?
 - Achievable goals: Verifiable
 - Bob should be able to test achievement by looking at his input/output exchanges with Alice.
 - Question: Which wishful goals are verifiable?

Concluding

- More, complex, errors can be dealt with, thanks to improved computational abilities
- Need to build/study tradeoffs between global reliability and local computation.
- Meaning of information needs to be preserved!
- Need to merge computation and communication more tightly!

Thank You!