(Computational) Complexity: In every day life?

Madhu Sudan MIT

March 24, 2009

Theory of Computing?

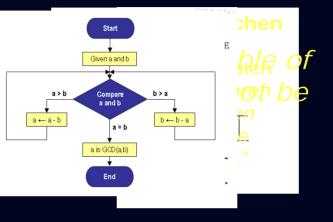
- Part I: Origins: Computers and Theory
- Part II: Modern Complexity
- Part III: Implications to everyday life.
- Part IV: Future of computing

Origins of Computation

March 24, 2009

Tracing Computing Backwards

"Entscheidung der L&sb Gleichung., Eine diop "Angehalweichen Unbekanne expreiseringeetermente angeben, nach welchen Anzahl von Operationel Gleichung in ganzen rat



- Turing (1936): Universal Computer (Model)
- Gödel (1931): Logical predecessor.
- Hilbert (1900): Motivating questions/program.
- Gauss (1801): Efficient factoring of integers?
- Euclid (-300): Computation of common divisors!
- Prehistoric!! (adding, subtracting, multiplying, thinking (at least logically) are all computing!)

Tracing Computing Forwards

"Rumors of its demise are greatly exaggerated ..."

... More later.

March 24, 2009

Computation and Complexity

March 24, 2009

Complexity in everyday life

7

Example: Integer Addition

Addition: Suppose you want to add two ten-digit numbers. Does this take about 10 steps? Or about 10 x 10 steps?
1 1 1 1 1 1 1
2 3 1 5 6 7 5 6 8 9
+ 5 8 9 1 4 3 2 2 6
2 9 0 4 8 1 8 9 1 5

~10 steps! Linear time!

March 24, 2009

Computation!

- What we saw was a <u>computational procedure</u> (algorithm) to add integers.
- In general Algorithm =
 - Sequence of steps
 - Each step very simple (finite + local)
 - Every step of sequence determined by previous steps.
- Formalization:
 - Turing Machine/Computer Program/Computer!

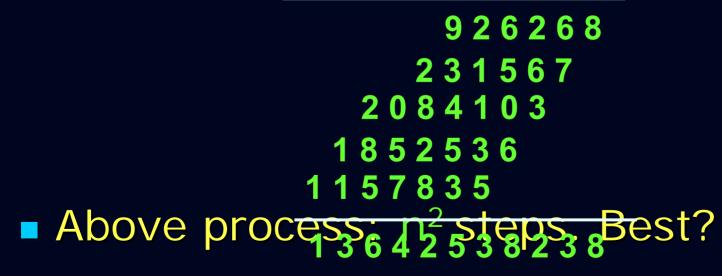
Moral: Computation is ancient! Eternal!!

First Law of Computation [Turing]

- Universality: There is a <u>single</u> computer which can execute <u>every</u> algorithm.
- Obvious today
 - ... we all own such a "single computer".
- Highly counterintuitive at the time of Turing.
- Idea made practical by von Neumann.

Example 2: Multiplication

Multiplication: Suppose you want to multiply two n-digit numbers. Does this take about n steps? Or n x n steps?



Complexity

- Adding/Multiplying n-digit numbers
- Addition: ~n steps; Multiplication: ~n² steps.
- Is addition really <u>easier</u> than multiplication?
- Can we prove multiplying requires n² steps ? (Needed to assert addition is easier!)
 - Unfortunately, NO!
 - Why?
 - Answer 1: Proving "every algorithm must be slow" is hard!
 - Answer 2: Statement is incorrect!
 - Better algorithms (running in nearly linear time) exist!

Computation and Complexity

Broad goal of Computational Research:
 For each computational task
 Find best algorithms [Algorithm Design]
 Prove they are best possible [Complexity]

Challenges to the field:

Algorithms: Can be ingenious
 (in fact they model ingenuity!)
 Complexity: Elusive, Misleading

Example: Integer Arithmetic

- Addition: Linear!
- Multiplication: Quadratic! Fastest? Not-linear
- Factoring? Write 13642538238 as product of two integers (each less than 1000000)
- Inverse of multiplication.
 Not known to be linear/quadratic/cubic.
 Believed to require exponential time.

Computation and Complexity

Broad classification of Computational Problems

Easy

- Doublingaofcresources/increases/sizeiabf largesttfeasible problem by multiplicative factor.
- Hard

• Doubling of resdurces problem by additive factor.

Computation and Complexity

Broad classification of problems

- Easy: Doubling of resources increases size of largest feasible problem by multiplicative factor.
- Hard: Doubling of resources increases size of largest feasible problem by additive factor.
- Computer Science
 - = (Mathematical) Study of Easiness.

= (Mathematical) Study of Complexity.

Reversibility of Computation?

Recall: Multiplication vs. Factoring

- Factoring <u>reverses</u> Multiplication
- Multiplication Easy
- Factoring seems Hard

P = Class of Easy Computational Problems.
 Problem given by function f: input → output.

NP = <u>Reverses</u> of P problems.

Given function f in P, and output, give (any) input such that f(input) = output.

Open: Is P=NP?

March 24, 2009

Second Law of Computation? [Unproven]

- Irreversibility Conjecture: Computation can not be easily reversed. (P ≠ NP).
- The famed "P = NP?" question
 - Financially Interesting:
 - Clay Institute offers US\$ 1.000.000.
 - Mathematically interesting:
 - Models essence of theorems and proofs.
 - Computationally interesting:
 - Captures essential bottlenecks in computing.
 - Interesting to all:
 - Difference between goals and path to goals.

NP-completeness and consequences

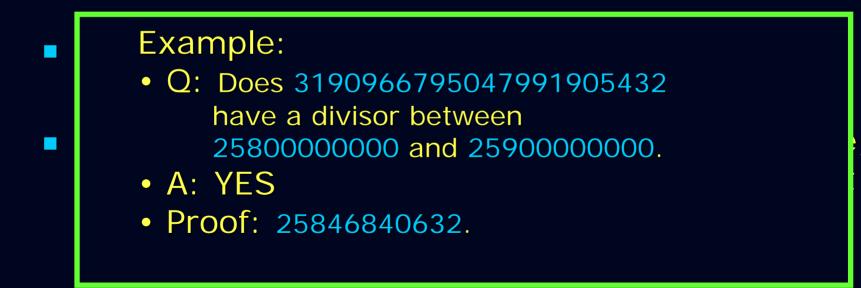
March 24, 2009

Hardest problem in NP

- Even though we don't know if NP = P, we know which problems in NP may be the hardest. E.g.,
 - Travelling Salesman Problem
 - Integer Programming
 - Finding proofs of theorems
 - Folding protien sequences optimally
 - Computing optimal market strategies
- These problems are **NP-**complete.
 - If any one can be <u>easily</u> solved, then all can be <u>easily</u> solved.

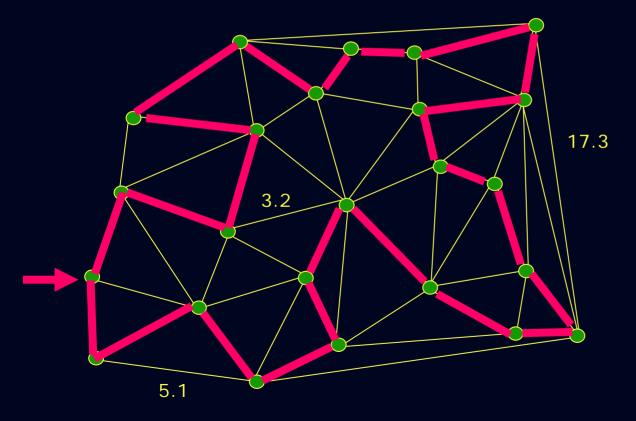
An NP-complete Problem: Divisor?

- Given n-digit numbers A, B, C, does A have a divisor between B and C?
 - (Does there exist D such that B < D < C and D divides A?)



Example 2: Travelling Salesman Problem

- Many cities;
- Want to visit all and return home;
- Can he do it with < 125 hours of driving?



#Hours so far

Easy to verify if answer is YES.

Can you prove if answer is NO?

Theorems and Proofs

1900-2000: Mathematical formalization of Logic

- [Hilbert, Gödel, Church, Turing ...]
- Logic = Axioms + Deduction Rules
- Theorem, Proofs: Sentences over some alphabet.
 - Theorem: <u>Valid</u> if it follows from axioms and deduction rules.
 - Proof: Specifies axioms used and order of application of deduction rules.

Computational abstraction:

- (Theorem, Proof) easy to verify.
- Finding a proof for proposed theorem is hard.

Theorem: Finding short proofs is NP-complete.

Theorems: Deep and Shallow

• A Deep Theorem: $\forall x,y,z \in \mathbb{Z}^+, n \geq 3$ $x^n + y^n
eq z^n$

Proof: (too long to fit in this section).

• A Shallow Theorem:

- The number 3190966795047991905432 has a divisor between 2580000000 and 2590000000.
- Proof: 25846840632.

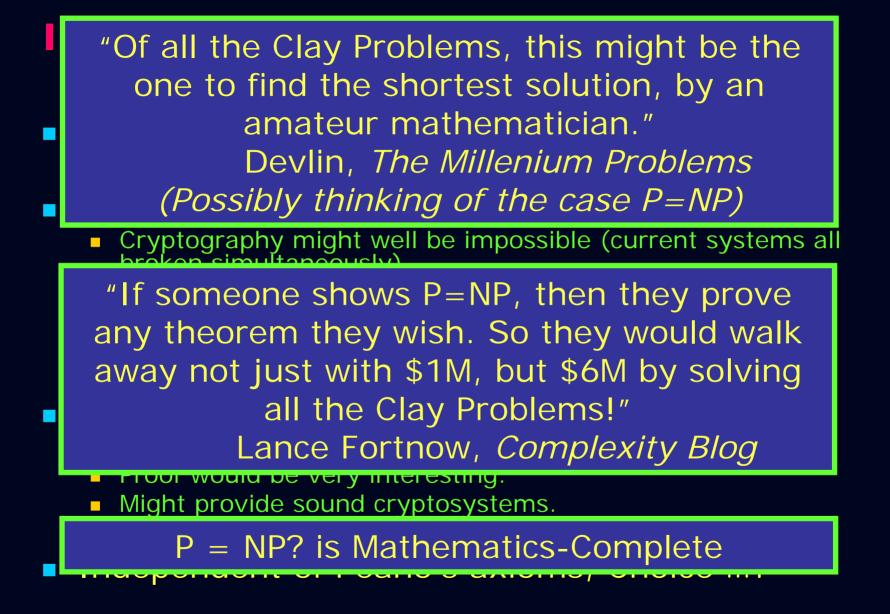
NP-Completeness & Logic

Theory of NP-completeness:
 Every (deep) theorem reduces to shallow one.

Given theorem T and bound n on the length (in bits) of its proof there exist integers $0 \le A, B, C \le 2^{n^c}$ such that A has a divisor between B and Cif and only if T has a proof of length n.

Shallow theorem easy to compute from deep one.
Shallow proofs are not much longer.

Every NP-complete problem = "format" for proofs.



Probabilistic Verification of Proofs

 NP-completeness implies many surprising effects for logic.

• Examples:

- Proofs can be verified <u>interactively</u> much more quickly than in "published format"!
- Proofs may reveal knowledge selectively!
- Proofs need not be <u>fully read</u> to verify them!

"Deep theorems" of computational complexity.

Computation and You?

March 24, 2009

Computation beyond Computers

Computation is not just about computers:

- It models all systematic processing ...
 - Adding/Subtracting
 - Logical Deduction
 - Reasoning
 - Thought
 - Learning
 - Cooking ("Recipes = Algorithms")
 Shampoo'ing your hair.
 Design, Engineering, Scientific ...

Biological organisms compute

- Folded structure of protiens determines their action.
 - Common early belief: Protiens fold so as minimize their energy.
 - However ...
 - Minimum Energy configuration hard to compute (NP-complete).
 - Implication:
 - Perhaps achievable configurations are not global minima.

NP-Completeness and Economics

Economic belief:

 Individuals act rationally, optimizing their own profit, assuming rational behavior on other's part.

However ...

- Optimal behavior is often hard to compute (NP-complete)
- In such cases irrational (or bounded rationality) is best possible.
- Alters behavior of market.

NP-Completeness and the Brain

- Axiom: Brain is a computer
 - (Follows from Universality).
- Implications to Neuroscience:
 - What is the model of computing (neural network, other?)
- More significantly ... to Education:
 - Education = Programming of the brain (without losing creativity)
 - What algorithms to "teach"
 - Why multiplication? What is the point of "rote"?
 - Do resources matter? How much?
 - How much complexity can a child's brain handle?

NP-Completeness and Life

- Life = Choices + Consequences
 - Which school should I go to?
 - What subjects should I learn?
 - How should I spend my spare time?
 - Which job should I take?
 - Should I insult my boss today? Or tomorrow?
 - Sequence of simple steps that add up ...
 - Eventually we find out if we did the right thing!
- Life = (Non-deterministic) computation.
- P = NP? ⇔ Humans don't need creativity/choice

Computation and You

- Eventually ... humans are characterized by their intelligence.
- Intelligence is a "computational effect".
- Inevitably "computation" is the "intellectual core of humanity".
- Shouldn't be surprised if it affects all of us.

Future of Computing

March 24, 2009

Tracing Computing Forwards

"Rumors of its demise are greatly exaggerated"

Computing thus far ...

- First Law: Universality
- Second Law(?): Irreversibility.

Just the <u>beginning</u> ...

Image: model of Micro-Computer Science (one computer manipulating information).

Future = Macro-Computer Science: The vast unknown

- What happens when many computers interact?
 - What determines long term behavior?
 - What describes long term behavior?
 - What capabilities do we have (as intelligent beings, society) to control and alter this long term behavior?
 - How do computers evolve?
- Questions relevant already: Internet, WWW etc.
- What scientific quests are most similar?
 - Statistical) Physics? Biology? Chemistry (big reactions)?
 - Sociology? Logic?
 - Mathematics?

Computation = Mathematics of the 21st Century.

Acknowledgments (+ Pointers)

- This talk is inspired by (and borrows freely from) ...
- Christos Papadimitriou: The Algorithmic Lens
 http://lazowska.cs.washington.edu/fcrc/Christos.FCRC.pdf
- Avi Wigderson: A world view through the computational lens

<u>http://www.math.ias.edu/~avi/TALKS/</u>

 Many colleagues: esp. Oded Goldreich, Salil Vadhan

March 24, 2009

Thank You!

March 24, 2009