Probabilistically Checkable Proofs

Madhu Sudan MIT CSAIL

Happy 75th Birthday, Appa!

Can Proofs Be Checked Efficiently?

The Riemann Hypothesis is true (12th Revision)

By

Ayror Sappen

Pages to
follow: 15783

Proofs and Theorems

- Conventional belief: Proofs need to be read carefully to be verified.
- Modern constraint: Don't have the time (to do anything, leave alone) read proofs.

This talk:

- New format for writing proofs.
- Efficiently verifiable probabilistically, with small error probability.
- Not much longer than conventional proofs.

Outline of talk

- Quick primer on the Computational perspective on theorems and proofs (proofs can look very different than you'd think).
- Definition of Probabilistically Checkable Proofs (PCPs).
- Some overview of "ancient" (15 year old) and "modern" (3 year old) PCP constructions.

Theorems: Deep and Shallow

• A Deep Theorem:

$$\forall x, y, z \in \mathbb{Z}^+, n \ge 3, \ x^n + y^n \neq z^n$$

Proof: (too long to fit in this section).

- A Shallow Theorem:
 - The number 3190966795047991905432 has a divisor between 2580000000 and 2590000000.
 - Proof: 25846840632.

Computational Perspective

Theory of NP-completeness:

Every (deep) theorem reduces to shallow one.

Given theorem T and bound n on the length (in bits) of its proof there exist integers $0 \le A, B, C \le 2^{n^{\circ}}$ such that A has a divisor between B and C if and only if T has a proof of length T.

- Shallow theorem easy to compute from deep.
 A, B, C computable in poly(n) time from T.
- Shallow proofs are not much longer.

P & NP

- P = Easy Computational Problems
 - Solvable in polynomial time
 - (E.g., Verifying correctness of proofs)
- NP = Problems whose solution is easy to verify
 (E.g., Finding proofs of mathematical theorems)
- NP-Complete = Hardest problems in NP
- Is P = NP?
 - Is finding a solution as easy as specifying its properties?
 - Can we replace every mathematician by a computer?
 - Wishing = Working!

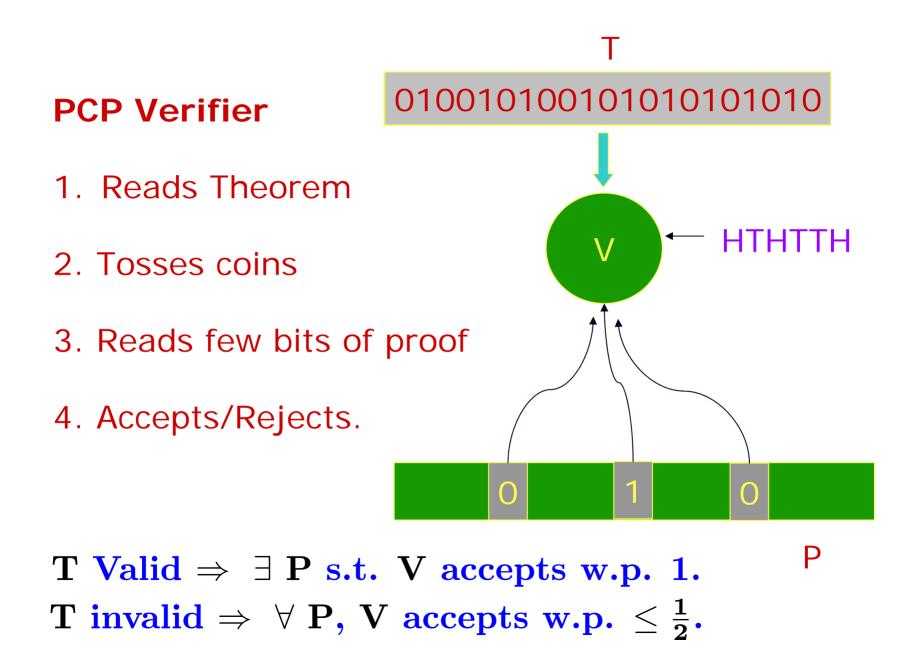
More Broadly: New formats for proofs

- New format for proof of T: Divisor D (A,B,C don't have to be specified since they are known to (computable by) verifier.)
- Theory of Computation replete with examples of such "alternate" lifestyles for mathematicians (formats for proofs).
 - Equivalence: (1) new theorem can be computed from old one efficiently, and (2) new proof is not much longer than old one.
- Question: Why seek new formats? What benefits can they offer? Can they help

Probabilistically Checkable Proofs

How do we formalize "formats"?

- Answer: Formalize the Verifier instead. "Format" now corresponds to whatever the verifier accepts.
- Will define PCP verifier (probabilistic, errs with small probability, reads few bits of proof) next.



Features of interest

- Number of bits of proof queried must be small (constant?).
- Length of PCP proof must be small (linear?, quadratic?) compared to conventional proofs.
- Optionally: Classical proof can be converted to PCP proof efficiently. (Rarely required in Logic.)
- Do such verifiers exist?
- PCP Theorem [Arora, Lund, Motwani, S., Szegedy, 1992]: They do; with constant queries and polynomial PCP length.
- [2006] New construction due to Dinur.

Part II – Ingredients of PCPs

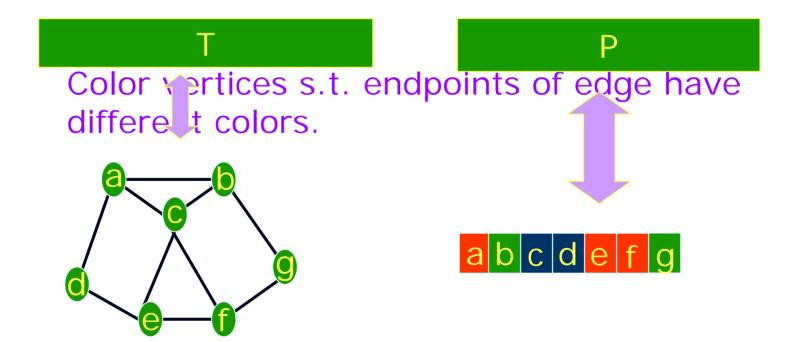
Essential Ingredients of PCPs

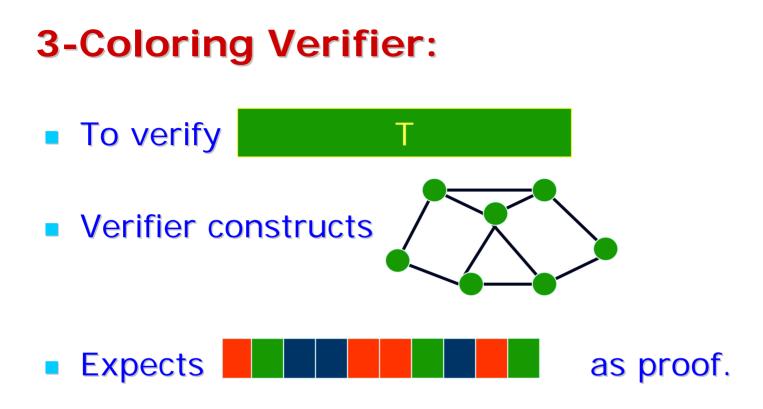
Locality of error:

- If theorem is wrong (and so "proof" has an error), then error in proof can be pinpointed <u>locally</u> (found by verifier that reads only few bits of proof).
- Abundance of error:
 - Errors in proof are <u>abundant</u> (easily seen in random probes of proof).
- How do we construct a proof system with these features?

Locality: From NP-completeness

3-Coloring is NP-complete:





- To verify: Picks an edge and verifies endpoints distinctly colored.
- Error: Monochromatic edge = 2 pieces of proof.
- Local! But errors not frequent.

Amplifying error: Algebraic approach

• Graph = E: V x V \rightarrow {0,1}

Place V in finite field \mathbb{F}

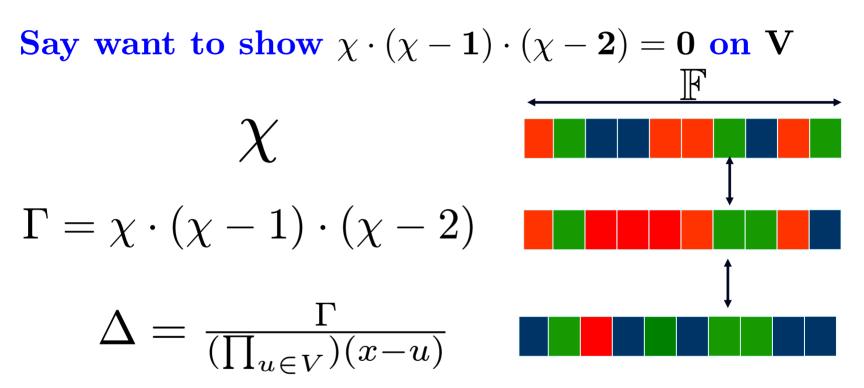
 $\begin{array}{l} \textbf{Convert } \mathbf{E} \text{ to polynomial} \\ \mathbf{\hat{E}}: \mathbb{F} \times \mathbb{F} \to \mathbb{F} \text{ s.t. } \mathbf{\hat{E}}|_{\mathbf{V} \times \mathbf{V}} = \mathbf{E} \end{array}$

Algebraize search:
Want $\chi : \mathbb{F} \to \mathbb{F}$ s.t. $\chi(\mathbf{v}) \cdot (\chi(\mathbf{v}) - \mathbf{1}) \cdot (\chi(\mathbf{v}) - \mathbf{2}) = \mathbf{0}, \quad \forall \mathbf{v} \in \mathbf{V}$ $\hat{\mathbf{E}}(\mathbf{u}, \mathbf{v}) \cdot \prod_{\mathbf{i} \in \{-2, -1, 1, 2\}} (\chi(\mathbf{u}) - \chi(\mathbf{v}) - \mathbf{i}) = \mathbf{0}, \forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$

Algebraic theorems and proofs

- Theorem: Given V ⊆ F, operators A, B, C; and degree bound d
 - $\exists \chi \text{ of degree d s.t. } \mathbf{A}(\chi), \mathbf{B}(\chi), \mathbf{C}(\chi) \text{ zero on } \mathbf{V}$
- Proof:
 - Evaluations of χ , $\mathbf{A}(\chi)$, $\mathbf{B}(\chi)$, $\mathbf{C}(\chi)$
 - Additional stuff, e.g., to prove zero on V
- Verification?
 - Low-degree testing (Verify degrees)
 - "Discrete rigidity phenomena"?
 - Test consistency
 - Error-correcting codes!

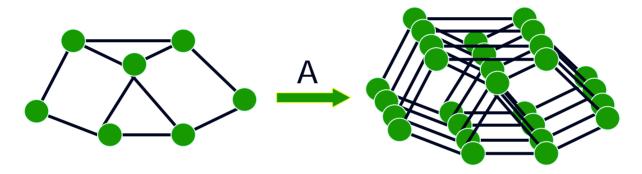
Some Details



Checks: χ, Γ, Δ are low-degree polynomials $\chi(\alpha), \Gamma(\alpha), \Delta(\alpha)$ consistent

Amplifying Error: Graphically

Dinur Transformation: There exists a linear-time algorithm A:



- \bullet $\mathbf{A}(\mathbf{G})$ 3-colorable if \mathbf{G} is 3-colorable
- Fraction of monochromatic edges in A(G)is twice the fraction in G (unless fraction in G is $\geq \epsilon_0$).

Graphical amplification

- Series of applications of A:
 - Increases error to absolute constant
 - Yield PCP
- Achieve A in two steps:
 - Step 1: Increase error-detection prob. By converting to (generalized) K-coloring
 - Random walks, expanders, spectral analysis of graphs.
 - Step 2: Convert K-coloring back to 3-coloring, losing only a small constant in error-detection.
 - Testing (~ "Discrete rigidity phenomenon" again)

Conclusion

- Proof verification by rapid checks is possible.
 - Does not imply math. journals will change requirements!
 - But not because it is not possible!
 - Logic is not inherently fragile!
- PCPs build on and lead to rich mathematical techniques.
- Huge implications to combinatorial optimization ("inapproximability")
- Practical use?
 - Automated verification of "data integrity"
 - Needs better size tradeoffs
 - ... and for practice to catch up with theory.

Thank You!