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Proofs and Theorems

= Conventional belief: Proofs need to be read
carefully to be verified.

= Modern constraint: Don’t have the time (to do
anything, leave alone) read proofs.

= This talk:
New format for writing proofs.

Efficiently verifiable probabilistically, with small
error probability.

Not much longer than conventional proofs.



Qutline of talk

Quick primer on the Computational perspective

on theorems and proofs (proofs can look very
different than you’d think).

Definition of Probabilistically Checkable Proofs
(PCPs).

Some overview of “ancient” (15 year old) and
“modern” (3 year old) PCP constructions.



Theorems: Deep and Shallow

= A Deep Theorem:
Ve,y,z € ZT,n >3, " +y" # 2"

Proof: (too long to fit in this section).

= A Shallow Theorem:

The number 3190966795047991905432 has a
divisor between 25800000000 and
25900000000.

Proof: 25846840632.



Computational Perspective

Theory of NP-completeness:
Every (deep) theorem reduces to shallow one.

Given theorem T and bound n on the length (in bits)
of its proof there exist integers 0 < A,B,C < 2™

such that A has a divisor between B and C

if and only if T has a proof of length T.

Shallow theorem easy to compute from deep.
A, B, C computable in poly(n) time from T.

Shallow proofs are not much longer.



P & NP

= P = Easy Computational Problems
Solvable in polynomial time
(E.g., Verifying correctness of proofs)

= NP = Problems whose solution is easy to verify
(E.g., Finding proofs of mathematical theorems)

= NP-Complete = Hardest problems in NP

= Is P = NP?
Is finding a solution as easy as specifying its properties?
Can we replace every mathematician by a computer?
Wishing = Working!



More Broadly: New formats for proofs

New format for proof of T: Divisor D (A,B,C don’t have to be
specified since they are known to (computable by) verifier.)

Theory of Computation replete with examples of such
“alternate” lifestyles for mathematicians (formats for
proofs).

Equivalence: (1) new theorem can be computed from old one
efficiently, and (2) new proof is not much longer than old one.

Question: Why seek new formats? What
benefits can they offer? -~ they help




Probabilistically Checkable Proofs

How do we formalize “formats”?

Answer: Formalize the Verifier instead. “Format”
now corresponds to whatever the verifier accepts.

Will define PCP verifier (probabilistic, errs with
small probability, reads few bits of proof) next.



.
PCP Verifier 010010100101010101010

1. Reads Theorem l
. ~— HTHTTH
2. Tosses coins

3. Reads few bits of proof
4. Accepts/Rejects.

T Valid = 4 P s.t. V accepts w.p. 1.
T invalid = V P, V accepts w.p. < %




Features of interest

= Number of bits of proof queried must be small (constant?).

= Length of PCP proof must be small (linear?, quadratic?)
compared to conventional proofs.

= Optionally: Classical proof can be converted to PCP proof
efficiently. (Rarely required in Logic.)

= Do such verifiers exist?

= PCP Theorem [Arora, Lund, Motwani, S., Szegedy, 1992]:
They do; with constant queries and polynomial PCP length.

= [2006] — New construction due to Dinur.



Part Il — Ingredients of PCPs



Essential Ingredients of PCPs

= Locality of error:

If theorem iIs wrong (and so “proof” has an error),
then error in proof can be pinpointed locally
(found by verifier that reads only few bits of proof).

= Abundance of error:

Errors in proof are abundant (easily seen in
random probes of proof).

= How do we construct a proof system with these
features?



Locality: From NP-completeness

= 3-Coloring is NP-complete:

Color gertices s.t. endpoints of edge have
differellt colors.

@—@
/ /\ albicdelflg
~o—o"



3-Coloring Verifier:

= To verify

0—0
= Verifier constructs / /\
o—o/

= EXpects ..........

as proof.

= To verify: Picks an edge and verifies endpoints
distinctly colored.

= Error: Monochromatic edge = 2 pieces of proof.
= Local! But errors not frequent.



Amplifying error: Algebraic approach

Graph=E: VXV —-{0,1}
Place V in finite field F

Convert E to polynomial
E:FxF—Fs.t. Eyvxw =E

Algebraize search:
Want y: F — [ s.t.

x(v) (x(v) —1)-(x(v)—2)=0, VveV
E(u,v) - [lici—2.—11.21(x(0) = x(v) —=i) = 0,Vu,v € V



Algebraic theorems and proofs

= Theorem: GivenV C [, operators A, B, C; and
degree bound d

Jy of degree d s.t. A(x),B(x),C(x) zero on V
= Proof:
Evaluations of X,A(x), B(x), C(x)
Additional stuff, e.qg., to prove zero on V
= Verification?
Low-degree testing (Verify degrees)
= — “Discrete rigidity phenomena”?
Test consistency
= — Error-correcting codes!



Some Detalls

Say want to show x-(x—1)-(x—2)=0o0on V
¥

X illlli*lli

F=x-x-1)-(x—-2) INEEENEENE

|
A=qre—w NEEEEEEER

Checks: X, I', A are low-degree polynomials

x(a), T'(a), A(a) consistent



Amplifying Error: Graphically

= Dinur Transformation: There exists a linear-time
algorithm A:

=
0—0 'A %
0 =%
/ 3
~— é—e O

—

¢ A(G) 3-colorable if G is 3-colorable

e Fraction of monochromatic edges in A(G)
is twice the fraction in G
(unless fraction in G is > ¢p).



Graphical amplification

= Series of applications of A:
Increases error to absolute constant
Yield PCP

= Achieve A in two steps:

Step 1: Increase error-detection prob. By
converting to (generalized) K-coloring

= Random walks, expanders, spectral analysis
of graphs.

Step 2: Convert K-coloring back to 3-coloring,
losing only a small constant in error-detection.

m Testing (— “Discrete rigidity phenomenon” again)



Conclusion

= Proof verification by rapid checks is possible.
Does not imply math. journals will change requirements!
But not because it is not possible!
Logic is not inherently fragile!

= PCPs build on and lead to rich mathematical
techniques.

= Huge implications to combinatorial optimization
(“inapproximability™)

= Practical use?
Automated verification of “data integrity”
Needs better size tradeoffs
... and for practice to catch up with theory.



Thank You!
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