Invariance in Property Testing

Madhu Sudan Microsoft/MIT

Property Testing

- ... of functions from D to R:
 - Property $P \subseteq \{D \rightarrow R\}$
- Distance
 - $\bullet \delta(f,g) = Pr_{x \in D} [f(x) \neq g(x)]$
 - $\bullet \delta(f,P) = \min_{g \in P} [\delta(f,g)]$
 - f is ϵ -close to g (f \approx_{ϵ} g) iff δ (f,g) $\leq \epsilon$.
- Local testability:
 - P is (k, ε, δ)-locally testable if ∃ k-query test T
 - f ∈ P ⇒ T^f accepts w.p. 1-ε.
 - □ δ (f,P) > δ \Rightarrow T^f accepts w.p. ε.
- Notes: want $k(\varepsilon, \delta) = O(1)$ for $\varepsilon, \delta = \Omega(1)$.

Brief History

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing
- [Goldreich, Goldwasser, Ron]
 - Graph property testing
- Since then ... many developments
 - Graph properties
 - Statistical properties
 - **...**
 - More algebraic properties

Specific Directions in Algebraic P.T.

- More Properties
 - Low-degree (d < q) functions [RS]</p>
 - Moderate-degree (q < d < n) functions</p>
 - q=2: [AKKLR]
 - General q: [KR, JPRZ]
 - Long code/Dictator/Junta testing [BGS,PRS]
 - BCH codes (Trace of low-deg. poly.) [KL]
- Better Parameters (motivated by PCPs).
 - #queries, high-error, amortized query complexity, reduced randomness.

My concerns ...

- Relatively few results ...
 - Why can't we get "rich" class of properties that are all testable?
 - Why are proofs so specific to property being tested?
- What made Graph Property Testing so wellunderstood?
- What is "novel" about Property Testing, when compared to "polling"?

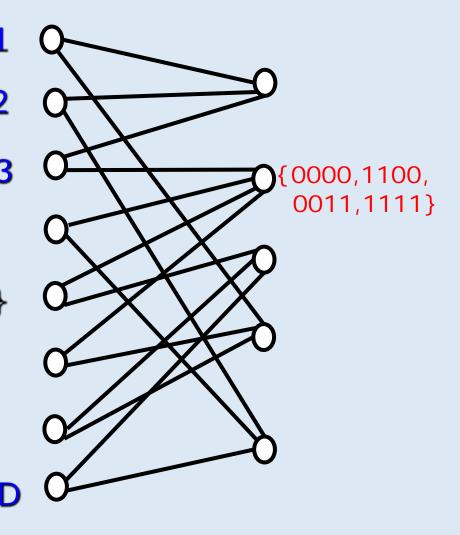
Contrast w. Combinatorial P.T. Universe: R is a field F; $\{f:D \rightarrow R\}$ P is linear! Must accept Don't care Algebraic Property = Code! (usually) Must reject

Basic Implications of Linearity [BHR]

- If P is linear, then:
 - Tester can be made non-adaptive.
 - Tester makes one-sided error
 - ($f \in P \Rightarrow$ tester always accepts).
- Motivates:
 - Constraints:
 - k-query test => constraint of size k:
 - value of f at $\alpha_1, \dots \alpha_k$ constrained to lie in subspace.
 - Characterizations:
 - If non-members of P rejected with positive probability, then P characterized by local constraints.
 - functions satisfying all constraints are members of P.

Pictorially

- f = assgm't to left
- Right = constraints
- Characterization of P:
 P = {f sat. all constraints}



Sufficient conditions?

- Linearity + k-local characterization ⇒ k-local testability?
- [BHR] No!
 - Elegant use of expansion
 - Rule out obvious test; but also <u>any</u> test ... of <u>any</u> "q(k)"-locality
- Why is characterization insufficient?
 - Lack of symmetry?

Example motivating symmetry

- Conjecture (AKKLR '96):
 - Suppose property P is a vector space over F₂;
 - Suppose its "invariant group" is "2-transitive".
 - Suppose P satisfies a k-ary constraint

- Then P is $(q(k), \epsilon(k,\delta),\delta)$ -locally testable.
- Inspired by "low-degree" test over F₂. Implied all previous algebraic tests (at least in weak forms).

Invariances

Property P invariant under permutation (function)
 π: D → D, if

$$f \in P \Rightarrow f \circ \pi \in P$$

- Property P invariant under group G if $\forall \pi \in G$, P is invariant under π .
- Can ask: Does invariance of P w.r.t. "nice" G leads to local testability?

Invariances are the key?

- "Polling" works well when (because) invariant group of property is the full symmetric group.
- Modern property tests work with much smaller group of invariances.
- Graph property ~ Invariant under vertex renaming.
- Algebraic Properties & Invariances?

Abstracting Algebraic Properties

- [Kaufman & S.]
- Range is a field F and P is F-linear.
- Domain is a vector space over F (or some field K extending F).
- Property is invariant under affine (sometimes only linear) transformations of domain.
- "Property characterized by single constraint, and its orbit under affine (or linear) transformations."

Invariance, Orbits and Testability

- Single constraint implies many
 - One for every permutation $\pi \in Aut(P)$:
 - "Orbit of a constraint C"

$$= \{C \circ \pi \mid \pi \in Aut(P)\}\$$

- Extreme case:
 - Property characterized by single constraint + its orbit: "Single orbit feature"
 - Most algebraic properties have this feature.
 - W.I.o.g. if domain = vector space over small field.

Example: Degree d polynomials

- Constraint: When restricted to a small dimensional affine subspace, function is polynomial of degree d (or less).
 - #dimensions $\leq d/(K-1)$
- Characterization: If a function satisfies above for every small dim. subspace, then it is a degree d polynomial.
- Single orbit: Take constraint on any one subspace of dimension d/(K-1); and rotate over all affine transformations.

Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests (in weak form) with single proof.

Analysis of Invariance-based test

■ Property P given by $\alpha_1,...,\alpha_k$; $V \in F^k$

- P = {f | $f(A(\alpha_1))$... $f(A(\alpha_k)) \in V$, \forall affine A: $K^n \rightarrow K^n$ }
- Rej(f) = Prob_A [$f(A(\alpha_1))$... $f(A(\alpha_k))$ not in V]
- Wish to show: If Rej(f) < 1/k³, then δ(f,P) = O(Rej(f)).

BLR Analog

- Rej(f) = $Pr_{x,y}$ [f(x) + f(y) ≠ f(x+y)] < ϵ
- Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).
- Step 0: Show o(f,g) small
- Step 1: ∀x, Pr_{y,z} [Vote_x(y) ≠ Vote_x(z)] small.
- Step 2: Use above to show g is well-defined and a homomorphism.

BLR Analysis of Step 1

■ Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

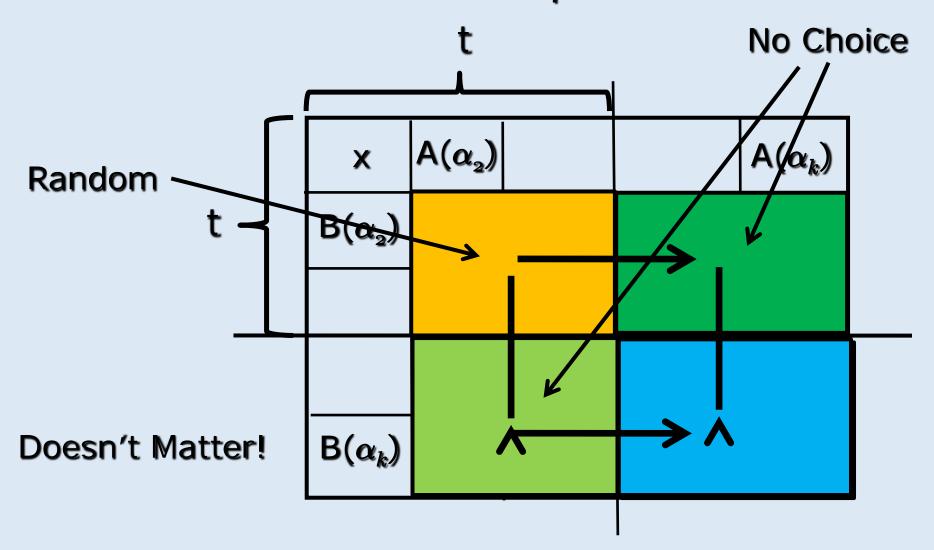
?	f(z)	- f(x+z)	
f(y)	0	-f(y)	
- f(x+y)	-f(z)	f(x+y+z)	——

Generalization

- $g(x) = \beta$ that maximizes, over A s.t. $A(\alpha_1) = x$, $Pr_A [\beta, f(A(\alpha_2), ..., f(A(\alpha_k)) \in V]$
- Step 0: δ(f,g) small.
- $Vote_x(A) = \beta s.t. \beta$, $f(A(\alpha_2))...f(A(\alpha_k)) \in V$ (if such β exists)
- Step 1 (key): ∀x, whp Vote_x(A) = Vote_x(B).
- Step 2: Use above to show g ∈ P.

Matrix Magic?

Say $A(\alpha_1)$... $A(\alpha_t)$ independent; rest dependent



ITCS: Invariance in Property Testing

Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests with single proof.
- If P is affine-invariant over K and has a single klocal constraint, then it is has a q-single orbit feature (for some q = q(K,k))
 - (explains the AKKLR optimism)

Results (contd.)

- If P is affine-invariant over K and has a single klocal constraint, then it is has a q-single orbit feature (for some q = q(K,k))
- Proof Ingredients:
 - Analysis of all affine invariant properties.
 - Rough characterization of locality of constraints, in terms of degrees of polynomials in the family.
- Infinitely many (new) properties ...

More details

- Understanding invariant properties:
 - Recall: all functions from Kⁿ to F are Traces of polynomials

■ (Trace(x) = X + X^p + X^{p²} + ... + X^{q/p} where
$$K = F_q$$
 and $F = F_p$)

- If P contains Tr(3x⁵ + 4x² + 2); then P contains Tr(4x²) ...
- So affine invariant properties characterized by degree of monomials in family.
- Most of the study ... relate degrees to upper and lower bounds on locality of constraints.

Some results

- If P is affine-invariant over K and has a single klocal constraint, then it is has a q-single orbit feature (for some q = q(K,k))
 - (explains the AKKLR optimism)
- Unfortunately, q depends inherently on K, not just F ... giving counterexample to AKKLR conjecture [joint with Grigorescu & Kaufman]
- Linear invariance when P is not F-linear:
 - Abstraction of some aspects of Green's regularity lemma ... [Bhattacharyya, Chen, S., Xie]
 - Nice results due to [Shapira]

More results

- Invariance of some standard codes
 - E.g. "dual-BCH": Have k-single orbit feature! So are "more uniformly" testable.

[Grigorescu, Kaufman, S.]

 Side effect: New (essentially tight) relationships between Rej_{AKKLR}(f) and δ(f,Degree-d) over F₂ [with Bhattacharyya, Kopparty, Schoenebeck, Zuckerman]

More results (contd.)

- Invariance of some standard codes
- Side effect: New (essentially tight) relationships between Rej_{AKKLR}(f) and δ(f,Degree-d) over F₂
- One hope: Could lead to "simple, good locally testable code"?
 - (Sadly, not with affine-inv. [Ben-Sasson, S.])
- Still ... other groups could be used? [Kaufman+Wigderson]

Conclusions

- Invariance seems to be a nice perspective on "property testing" ...
 - Certainly helps unify many algebraic property tests.
 - But should be a general lens in sublinear time algorithmics.

Thanks