Invariance in Property Testing

Madhu Sudan Microsoft/MIT

Modern challenge to Algorithm Design

- Data = Massive; Computers = Tiny
 - How can tiny computers analyze massive data?
 - Only option: Design sublinear time algorithms.
 - Algorithms that take less time to analyze data, than it takes to read/write all the data.
 - Can such algorithms exist?

Yes! Polling ...

- Is the majority of the population Red/Blue
 - Can find out by random sampling.
 - Sample size

 margin of error
 - Independent of size of population

Other similar examples: (can estimate other moments ...)

Recent "novel" example

- Can test for homomorphisms:
 - Given: f: G → H (G,H finite groups), is f essentially a homomorphism?
 - Test:
 - Pick x,y in G uniformly, ind. at random;
 - Verify $f(x) \cdot f(y) = f(x \cdot y)$
 - Completeness: accepts homomorphisms w.p. 1(Obvious)
 - Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 - (Not obvious)

Brief History

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing
- [Goldreich, Goldwasser, Ron]
 - Graph property testing
- Since then ... many developments
 - Graph properties
 - Statistical properties
 - ·..
 - More algebraic properties

Property Testing

- Data = a function from D to R:
 - Property $P \subseteq \{D \rightarrow R\}$
- Distance
 - $\bullet \delta(f,g) = Pr_{x \in D} [f(x) \neq g(x)]$
 - $\bullet \delta(f,P) = \min_{g \in P} [\delta(f,g)]$
 - f is ϵ -close to g (f \approx_{ϵ} g) iff δ (f,g) $\leq \epsilon$.
- Local testability:
 - P is (k, ε, δ)-locally testable if ∃ k-query test T
 - f ∈ P ⇒ T^f accepts w.p. 1-ε.
 - □ δ (f,P) > δ \Rightarrow T^f accepts w.p. ε.
- Notes: want $k(\varepsilon, \delta) = O(1)$ for $\varepsilon, \delta = \Omega(1)$.

Why is BLR special?

Why is BLR special?

- Impressive collection of generalizations, alternate proofs, applications (all of PCP, LTC theory, e.g.)?
- Why is it more interesting than just polling?
- Why did the proof work? Was it a one-shot thing?
- Most previous attempts to extend "broadly" failed ...

BLR Analysis

- Fix f s.t. Rej(f) = $Pr_{x,y}$ [f(x) + f(y) \neq f(x+y)] < ϵ
- Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).
- Step 0: Show o(f,g) small
- Step 1: ∀x, Pr_{y,z} [Vote_x(y) ≠ Vote_x(z)] small.
- Step 2: Use above to show g is well-defined and a homomorphism.

Key Step: Step 1

■ Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

(Note: Prob over y,z for fixed x.)

Proof:

•
$$f(x+y) + f(z) = f(x+y+z)$$
 [w.h.p.]
= $f(x+z) + f(y)$ [w.h.p. again]

- Proof from the Book.
 - (Indisputable! Inexplicable!)

Extensions

- [Rubinfeld + S. 92-96]: Low degree tests
- [Rubinfeld 94]: Functional equations
- [ALMSS, etc.]: PCP theory
- [AKKLR 02]: Reed-Muller tests
- [KaufmanRon, JPRZ]: Generalized RM tests.
 - ... each time a new proof of key step.

Abstraction of BLR (in special case)

- Restrict to G = Fⁿ and H = F (F = finite field; with q elements)
- Property:
 - Linear: (sum of linear functions is linear)
 - Locally characterized: $\forall x,y f(x) + f(y) = f(x+y)$
 - Linear-invariant: Linear function remains linear after linear transformation of domain.
 - Single-orbit: Constraints above given by one constraint and implication of linear-invariance.
- Our hope: Such abstractions explain, extend and unify algebraic property testing.

Invariances

Property P invariant under permutation (function)
 π: D → D, if
 f ∈ P ⇒ f o π ∈ P

■ Property P invariant under group G if
$$\forall \pi \in G$$
, P is invariant under π .

Can ask: Does invariance of P w.r.t. "nice" G leads to local testability?

Invariances are the key?

- "Polling" works well when (because) invariant group of property is the full symmetric group.
- Modern property tests work with much smaller group of invariances.
- Graph property ~ Invariant under vertex renaming.
- Algebraic Properties & Invariances?

Example motivating symmetry

- Conjecture (AKKLR '96):
 - Suppose property P is a vector space over F₂;
 - Suppose its "invariant group" is "2-transitive".
 - Suppose P satisfies a k-ary constraint
 - $\forall f \in P, f(\alpha_1) + \cdots + f(\alpha_k) = 0.$

- Then P is $(q(k), \epsilon(k,\delta),\delta)$ -locally testable.
- Inspired by "low-degree" test over F₂. Implied all previous algebraic tests (at least in weak forms).

Abstracting Algebraic Properties

- [Kaufman & S.]
- Range is a field F and P is F-linear.
- Domain is a vector space over F (or some field K extending F).
- Property is invariant under affine (sometimes only linear) transformations of domain.
- "Property characterized by single constraint, and its orbit under affine (or linear) transformations."

Terminology

k-Constraint: Sequence of k elements of domain, and set of forbidden values for this sequence.

e.g.
$$f(a) + f(b) = f(a+b)$$

k-characterization: Collection of k-constraints, satisfaction of which is necessary and sufficient criterion for satisfying property

e.g.
$$f(a) + f(b) = f(a+b)$$
, $f(c) + f(d) = f(c+d)$...

k-single-orbit characterization: One k-constraint such that its translations under affine group yields k-characterization.

$$f(L(a)) + f(L(b)) = f(L(a+b))$$
; a,b fixed, all linear L.

Main Results

Some results

- If P is affine-invariant and has k-single orbit characterization then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests (in basic form) with single proof.

Analysis of Invariance-based test

- Property P given by $\alpha_1,...,\alpha_k$; $V \subseteq F^k$
- P = {f | $(f(A(\alpha_1)), ..., f(A(\alpha_k))) \in V$, \forall affine A: $K^n \rightarrow K^n$ }
- Rej(f) = Prob_A [(f(A(α_1)), ..., f(A(α_k))) not in V]
- Wish to show: If Rej(f) < 1/k³, then δ(f,P) = O(Rej(f)).

BLR Analog

- Rej(f) = $Pr_{x,y}$ [f(x) + f(y) ≠ f(x+y)] < ϵ
- Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).
- Step 0: Show o(f,g) small
- Step 1: ∀x, Pr_{y,z} [Vote_x(y) ≠ Vote_x(z)] small.
- Step 2: Use above to show g is well-defined and a homomorphism.

Generalization

- $g(x) = \beta \text{ that maximizes, over A s.t. } A(\alpha_1) = x,$ $Pr_A \left[(\beta, f(A(\alpha_2), ..., f(A(\alpha_k))) \in V \right]$
- Step 0: δ(f,g) small.
- Vote_x(A) = β s.t. (β , f(A(α_2))...f(A(α_k))) ∈ V (if such β exists)
- Step 1 (key): ∀x, whp Vote_x(A) = Vote_x(B).
- Step 2: Use above to show g ∈ P.

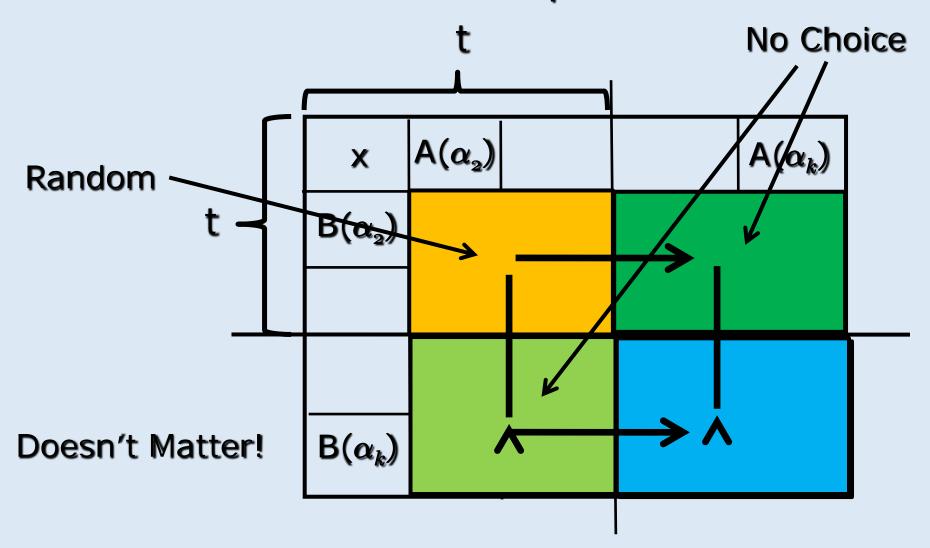
BLR Analysis of Step 1

■ Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

?	f(z)	- f(x+z)	
f(y)	0	-f(y)	-
- f(x+y)	-f(z)	f(x+y+z)	——

Matrix Magic?

Say $A(\alpha_1)$... $A(\alpha_t)$ independent; rest dependent



Results (contd.)

- Thm 2: If P is affine-invariant over K and has a single k-local constraint, then it is has a q-single orbit feature (for some q = q(K,k))
- Proof ingredients:
 - Analysis of all affine invariant properties.
 - Characterization of all affine invariant properties in terms of degrees of monomials in support of polynomials in family
 - Rough characterization of locality of constraints, in terms of degrees.
- Infinitely many (new) properties ...

Results from [KS '08]

- Thm 1: If P is affine-invariant and has k-single orbit feature then it is (k, δ/k³, δ)-locally testable.
 - Unifies previous algebraic tests with single proof.
- Thm 2: If P is affine-invariant over K and has a single k-local constraint, then it is has a q-single orbit feature (for some q = q(K,k))
 - (explains the AKKLR optimism)
- Completely characterizes local testability of affine-invariant properties over vector spaces over small fields.

Vector spaces over big fields?

- Most general case:
 - \bullet f: K \rightarrow F^m
 - Most interesting cases

K = huge field; F, m small.

- Reasons to study:
 - Broader class: Potential counterexamples to intuitive beliefs.
 - Include starting point for all LTCs (so far).

Subsequent results

- [GrigorescuKaufmanS'08]: Counterexample to AKKLR Conjecture.
- [GrigorescuKaufmanS.'09]: Single orbit characterization of some BCH (and other) codes.
- [Ben-SassonS.]: Limitations on rate of (O(1)locally testable) affine-invariant codes.
- [KaufmanWigderson]: LDPC codes with invariance (not affine-invariant)
- [BhattacharyyaChenS.Xie,Shapira]: Affineinvariant non-linear properties.

Technical nature of questions

• Given: k points $\alpha_1, ..., \alpha_k$ from K; and set of positive integers D,

When is the $k \times |D|$ matrix with columns indexed by [k] and rows by D, with (i,d)th entry being α_i^d , of full column rank?

 Nice connections to symmetric polynomials, and we have new results (we think).

Broad directions to consider

- Is every locally characterized affine-invariant property testable? (likely have a counterexample by now).
- What groups of invariances lead to testability?
- Is there a subclass of affine-invariant codes that will lead to linear-rate LTCs? (no(1)-locally testable with linear rate?)
- In general ... seek invariances

Thanks