The Method of Multiplicities

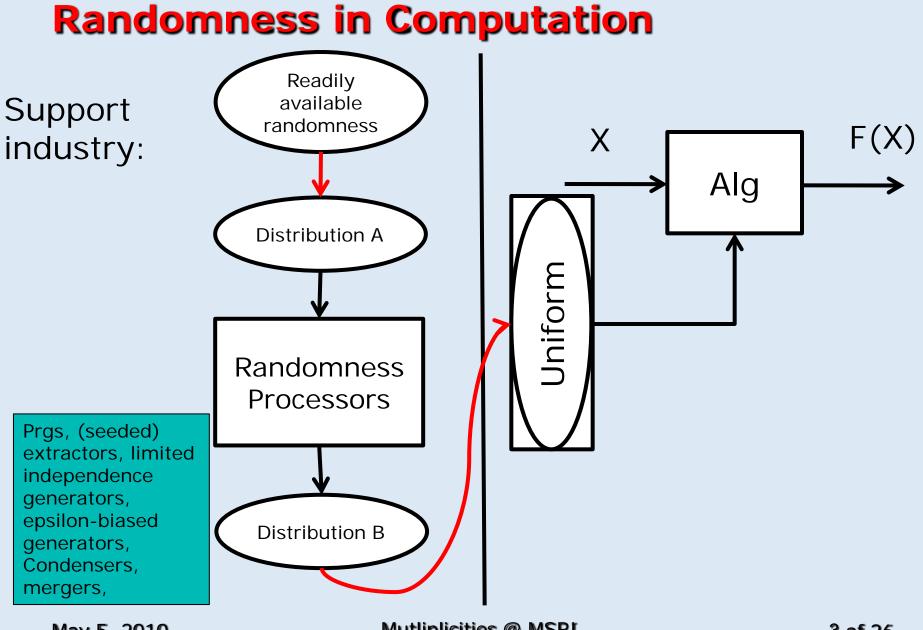
Madhu Sudan Microsoft New England/MIT

Based on joint works with:

- V. Guruswami '98
- S. Saraf '08
- Z. Dvir, S. Kopparty, S. Saraf '09

Kakeya Sets

- K ⊂ Fⁿ is a Kakeya set if it has a line in every direction.
 - I.e., $\forall y \in F^n \exists x \in F^n$ s.t. $\{x + t.y | t \in F\} \subset K$
 - F is a field (could be Reals, Rationals, Finite).
- Our Interest:
 - $F = F_q$ (finite field of cardinality q).
 - Lower bounds.
 - Simple/Obvious: $q^{n/2} \le K \le q^n$
 - Do better? Mostly open till [Dvir 2008].



May 5, 2010

Mutliplicities @ MSRI

Randomness Extractors and Mergers

- Extractors: Physical randomness (correlated, biased) + small pure seed -> Pure randomness (for use in algorithms).
- Mergers: General primitive useful in the context of manipulating randomness.
 - Given: k (possibly dependent) random variables X₁ ... X_k, such that one is uniform over its domain,
 - Add: small seed S (Additional randomness)
 - Output: a uniform random variable Y.

Merger Analysis Problem

 Merger(X₁,...,X_k; s) = f(s), where X₁, ..., X_k ∈ F_qⁿ; s ∈ F_q and f is deg. k-1 function mapping F → Fⁿ s.t. f(i) = X_i. (f is the curve through X₁,...,X_k)

- Question: For what choices of q, n, k is Merger's output close to uniform?
- Arises from [DvirShpilka'05, DvirWigderson'08].
 "Statistical high-deg. version" of Kakeya problem.

May 5, 2010

Mutliplicities @ MSRI

List-decoding of Reed-Solomon codes

- Given L polynomials P₁,...,P_L of degree d; and sets S₁,...,S_L ⊂ F × F s.t.
 - $|S_i| = t$ $S_i \subset \{(x, P_i(x)) \mid x \in F\}$
 - How small can n = |S| be, where $S = \bigcup_i S_i$?
- Problem arises in "List-decoding of RS codes"
 - Algebraic analysis from [S. '96, GuruswamiS'98] basis of decoding algorithms.

What is common?

- Given a set in F_qⁿ with nice algebraic properties, want to understand its size.
 - Kakeya Problem:
 - The Kakeya Set.
 - Merger Problem:
 - Any set T ⊂ Fⁿ that contains e-fraction of points on e-fraction of merger curves.
 - If T small, then output is non-uniform; else output is uniform.
 - List-decoding problem:
 - The union of the sets.

List-decoding analysis [S '96]

• Can Show: $t > n/L + dL \Rightarrow (y - P_i(x)) | Q$

 Conclude: n ≥ L (t - dL).
 (Can be proved combinatorially also; using inclusion-exclusion)
 If L > t/(2d), yield n ≥ t²/(4d)

Mutliplicities @ MSRI

Kakeya Set analysis [Dvir '08]

- Find $Q(x_1,...,x_n) \neq 0$ s.t.
 - Total deg. of Q < q (let deg. = d)</p>

• Q(x) = 0 for every $x \in K$. (exists if $|K| < q^n/n!$)

- Prove that homogenous deg. d part of Q vanishes on y, if there exists a line in direction y that is contained in K.
 - Line $L \subset K \Rightarrow Q|_{L} = 0$.
 - Highest degree coefficient of Q|_L is homogenous part of Q evaluated at y.
- Conclude: homogenous part of Q = 0. ><.</p>
- Yields $|K| \ge q^n/n!$.

Improved L-D. Analysis [G.+S. '98]

- Can we improve on the inclusion-exclusion bound? Working when t < dL?</p>
- Idea: Try fitting a polynomial Q that passes through each point with "multiplicity" 2.
 - Can find with $Deg_y < L$, $Deg_x < 3n/L$.
 - If 2t > 3n/L + dL then $(y-P_i(x)) | Q$.
 - Yields n ≥ (L/3).(2t dL)
 - If L>t/d, then $n \ge t^2/(3d)$.
- Optimizing Q; letting mult. $\rightarrow \infty$, get $n \ge t^2/d$

May 5, 2010

Mutliplicities @ MSRI

Aside: Is the factor of 2 important?

- Results in some improvement in [GS] (allowed us to improve list-decoding for codes of high rate) ...
- But crucial to subsequent work
 - [Guruswami-Rudra] construction of rateoptimal codes: Couldn't afford to lose this factor of 2 (or any constant > 1).

Multiplicity = ?

- Over reals: f(x,y,z) has root of multiplicity m at (a,b,c) if every partial derivative of order up to m-1 vanishes at 0.
- Over finite fields?
 - Derivatives don't work; but "Hasse derivatives" do. What are these? Later...
 - There are {m + n choose n} such derivatives, for n-variate polynomials;

Each is a linear function of coefficients of f.

Multiplicities in Kakeya [Saraf,S '08]

- Back to $K \subset F^n$. Fit Q that vanishes often?
 - Works!
 - Can find Q ≠ 0 of individual degree < q, that vanishes at each point with multiplicity n, provided |K| 4ⁿ < qⁿ
 - $\blacksquare Q|_{L} is of degree < qn.$
 - But it vanishes with multiplicity n at q points!
 - So it is identically zero ⇒ its highest degree coeff. is zero. ><</p>
- Conclude: |K| ≥ (q/4)ⁿ

Comparing the bounds

- Simple: $|K| \ge q^{n/2}$
- [Dvir]: |K| ≥ qⁿ/n!
- [SS]: |K| ≥ qⁿ/4ⁿ
- [SS] improves Simple even when q (large) constant and n → ∞ (in particular, allows q < n)
- [MockenhauptTao, Dvir]: $\exists K \text{ s.t. } |K| \leq q^n/2^{n-1} + O(q^{n-1})$
- Can we do even better?
- Improve Merger Analysis?

Concerns from Merger Analysis

Recall Merger(X₁,...,X_k; s) = f(s), where X₁, ..., X_k ∈ F_qⁿ; s ∈ F_q and f is deg. k-1 curve s.t. f(i) = X_i.
[DW08] Say X₁ random; Let K be such that ε fraction of choices of X₁,...,X_k lead to "bad" curves such that ε fraction of s's such that Merger outputs value in K with high probability.

- Build low-deg. poly Q vanishing on K; Prove for "bad" curves, Q vanishes on curve; and so Q vanishes on ε-fraction of X₁'s (and so ε-fraction of domain).
- Apply Schwartz-Zippel. ><</p>

May 5, 2010

Concerns from Merger Analysis

- [DW] Analysis: Works only if q > n.
 - So seed length = $\log_2 q > \log_2 n$
 - Not good enough for setting where k = O(1), and $n \to \infty$.
 - Would like seed length to be O(log k)).
- Multiplicty technique: Seems to allow q < n.</p>
 - But doesn't seem to help ...
 - Degrees of polynomials at most qn;
 - Limits multiplicities.

General obstacle in multiplicity method

- Can't force polynomial Q to vanish with too high a multiplicity. Gives no benefit.
- E.g. Kakeya problem: Why stop at mult = n?
 - Most we can hope from Q is that it vanishes on all of qⁿ;
 - Once this happens, Q = 0, if its degree is < q in each variable.
 - So Q|_L is of degree at most qn, so mult n suffices. Using larger multiplicity can't help!
 - Or can it?

Extended method of multiplicities

- In Kakeya context):
 - Perhaps Q can be shown to vanish with high multiplicity at each point in Fⁿ.
 - (Technical question: How?)
 - Perhaps vanishing of Q with high multiplicity at each point shows higher degree polynomials (deg

Multiplicities?

- Q(X₁,...,X_n) has zero of mult. m at a = (a₁,...,a_n) if all (Hasse) derivatives of order < m vanish.</p>
- Hasse derivative = ?
 - Formally defined in terms of coefficients of Q, various multinomial coefficients and a.
 - But really ...
 - The i = (i1,..., in)th derivative is the coefficient of z₁ⁱ¹...z_nⁱⁿ in Q(z + a).
 - Even better ... coeff. of zⁱ in Q(z+x)
 - (defines ith derivative Q_i as a function of x; can evaluate at x = a).

Key Properties

 Each derivative is a linear function of coefficients of

Propagating multiplicities (in Kakeya)

- Find Q that vanishes with mult m on K
- For every i of order m/2, Q_i vanishes with mult m/2 on K.
- Conclude: Q, as well as all derivatives of Q of order m/2 vanish on Fⁿ

 \Rightarrow Q vanishes with multiplicity m/2 on Fⁿ

Next Question: When is a polynomial (of deg > qn, or even qⁿ) that vanishes with high multiplicity on qⁿ identically zero?

Vanishing of high-degree polynomials

- Mult(Q,a) = multiplicity of zeroes of Q at a.
- I(Q,a) = 1 if mult(Q,a) > 0 and 0 o.w.

 $= min\{1, mult(Q,a)\}$

- Schwartz-Zippel: for any S ⊂ F
 ∑ I(Q,a) ≤ d. |S|ⁿ⁻¹ where sum is over a ∈ Sⁿ
- Can we replace I with mult above? Would strengthen S-Z, and be useful in our case.
- [DKSS '09]: Yes ... (simple inductive proof ... that I can't remember)

Back to Kakeya

- Find Q of degree d vanishing on K with mult m. (can do if (m/n)ⁿ |K| < (d/n)ⁿ ⇔ dⁿ > mⁿ |K|)
- Conclude Q vanishes on Fⁿ with mult. m/2.
- Apply Extended-Schwartz-Zippel to conclude

(m/2) qⁿ < d qⁿ⁻¹

$$\Leftrightarrow$$
 (m/2)ⁿ qⁿ < dⁿ = mⁿ |K|

■ Conclude: |K| ≥ (q/2)ⁿ

Tight to within 2+o(1) factor!

Consequences for Mergers

- Can analyze [DW] merger when q > k very small, n growing;
 - Analysis similar, more calculations.
 - Yields: Seed length log q (independent of n).
- By combining it with every other ingredient in extractor construction:
 - Extract all but vanishing entropy (k o(k) bits of randomness from (n,k) sources) using O(log n) seed (for the first time).

Conclusions

- Method of multiplicities
 - Extends power of algebraic techniques beyond "low-degree" polynomials.
 - Key ingredient: Extended Schwartz-Zippel lemma.
 - Gives applications to
 - Kakeya Sets: Near tight bounds
 - Extractors: State of the art constructions
 - RS List-decoding: Best known algorithm [GS '98] + algebraic proofs of known bounds [DKSS '09].

Open:

Other applications? Why does it work?

May 5, 2010

Mutliplicities @ MSRI

Thank You