The Method of Multiplicities

Madhu Sudan

Microsoft New England/MIT

Based on joint works with:

- V. Guruswami '98
- S. Saraf '08
- Z. Dvir, S. Kopparty, S. Saraf '09

Agenda

- A technique for combinatorics, via algebra:
 - Polynomial (Interpolation) Method + Multiplicity method
 - List-decoding of Reed-Solomon Codes
 - Bounding size of Kakeya Sets
 - Extractor constructions

Part I: Decoding Reed-Solomon Codes

- Reed-Solomon Codes:
 - Commonly used codes to store information (on CDs, DVDs etc.)
 - Message: C_0 , C_1 , ..., $C_d \in F$ (finite field)
 - Encoding:
 - View message as polynomial: $M(x) = \sum_{i=0}^{d} C_i x^i$
 - Encoding = evaluations: $\{ M(\alpha) \}_{\{ \alpha \in F \}}$
- Decoding Problem:
 - Given: (x_1,y_1) ... $(x_n,y_n) \in F \times F$; integers t,d;
 - Find: deg. d poly through t of the n points.

List-decoding?

- If #errors (n-t) very large, then several polynomials may agree with t of n points.
 - List-decoding problem:
 - Report <u>all</u> such polynomials.
 - Combinatorial obstacle:
 - There may be too many such polynomials.
 - Hope can't happen.
 - To analyze: Focus on polynomials $P_1,..., P_L$ and set of agreements $S_1 ... S_L$.
- Combinatorial question: Can S₁, ... S⌊ be large, while n = | ∪_j S_j | is small?

List-decoding of Reed-Solomon codes

- Given L polynomials $P_1,...,P_L$ of degree d; and sets $S_1,...,S_L \subset F \times F$ s.t.
 - $|S_i| = t$
 - $\square S_i \subset \{(x,P_i(x)) \mid x \in F\}$
 - How small can n = |S| be, where $S = \bigcup_i S_i$?
- Algebraic analysis from [S. '96, GuruswamiS '98] basis of decoding algorithms.

List-decoding analysis [S '96]

- Construct $Q(x,y) \neq 0$ s.t.
 - Deg_v(Q) < L</p>
 - $\square \operatorname{Deg}_{\mathsf{x}}(\mathsf{Q}) < \mathsf{n}/\mathsf{L}$
 - $\mathbb{Q}(x,y) = 0$ for every $(x,y) \in S = \bigcup_{i} S_{i}$
- Can Show:
 - Such a Q exists (interpolation/counting).
 - Implies: $t > n/L + dL \Rightarrow (y P_i(x)) | Q$
- Conclude: n ≥ L· (t − dL).
 - (Can be proved combinatorially also; using inclusion-exclusion)
 - If L > t/(2d), yield $n \ge t^2/(4d)$

Focus: The Polynomial Method

- To analyze size of "algebraically nice" set S:
 - Find polynomial Q vanishing on S;
 - (Can prove existence of Q by counting coefficients ... degree Q grows with |S|.)
 - Use "algebraic niceness" of S to prove Q vanishes at other places as well.
 - (In our case whenever $y = P_i(x)$).
 - Conclude Q zero too often (unless S large).

... (abstraction based on [Dvir]'s work)

Improved L-D. Analysis [G.+S. '98]

- Can we improve on the inclusion-exclusion bound? One that works when n > t²/(4d)?
- Idea: Try fitting a polynomial Q that passes through each point with "multiplicity" 2.
 - Can find with Deg_v < L, Deg_x < 3n/L.</p>
 - If 2t > 3n/L + dL then $(y-P_i(x)) | Q$.
 - Yields $n \ge (L/3).(2t dL)$
 - If L>t/d, then $n \ge t^2/(3d)$.
- Optimizing Q; letting mult. → ∞, get n ≥ t²/d

Aside: Is the factor of 2 important?

- Results in some improvement in [GS] (allowed us to improve list-decoding for codes of high rate) ...
- But crucial to subsequent work
 - [Guruswami-Rudra] construction of rateoptimal codes: Couldn't afford to lose this factor of 2 (or any constant > 1).

Focus: The Multiplicity Method

- To analyze size of "algebraically nice" set S:
 - Find poly Q zero on S (w. high multiplicity);
 - (Can prove existence of Q by counting coefficients ... degree Q grows with |S|.)
 - Use "algebraic niceness" of S to prove Q vanishes at other places as well.
 - (In our case whenever $y = P_i(x)$).
 - Conclude Q zero too often (unless S large).

Multiplicity = ?

 Over reals: Q(x,y) has root of multiplicity m+1 at (a,b) if every partial derivative of order up to m vanishes at 0.

Over finite fields?

- Derivatives don't work; but "Hasse derivatives" do. What are these? Later...
- There are {m+n choose n} such derivatives, for n-variate polynomials;
 - Each is a linear function of coefficients of f.

Part II: Kakeya Sets

Kakeya Sets

- K ⊂ Fⁿ is a Kakeya set if it has a line in every direction.
 - I.e., $\forall y \in F^n \exists x \in F^n \text{ s.t. } \{x + t.y \mid t \in F\} \subset K$
 - F is a field (could be Reals, Rationals, Finite).

Our Interest:

- $F = F_q$ (finite field of cardinality q).
- Lower bounds.
- Simple/Obvious: q^{n/2} ≤ K ≤ qⁿ
- Do better? Mostly open till [Dvir 2008].

Kakeya Set analysis [Dvir '08]

- Find $Q(x_1,...,x_n) \neq 0$ s.t.
 - Total deg. of Q < q (let deg. = d)</p>
 - $\mathbb{Q}(x) = 0$ for every $x \in K$. (exists if $|K| < q^n/n!$)
- Prove that (homogenous deg. d part of) Q vanishes on y, if there exists a line in direction y that is contained in K.
 - Line $L \subset K \Rightarrow Q|_{L} = 0$.
 - Highest degree coefficient of Q|_L is homogenous part of Q evaluated at y.
- Conclude: homogenous part of Q = 0. ><.</p>
- Yields |K| ≥ qⁿ/n!.

Multiplicities in Kakeya [Saraf, S'08]

- Fit Q that vanishes often?
 - Good choice: #multiplicity m = n
 - Can find Q ≠ 0 of individual degree < q, that vanishes at each point in K with multiplicity n, provided |K| 4ⁿ < qⁿ
 - Q|_L is of degree < qn.</p>
 - But it vanishes with multiplicity n at q points!
 - So it is identically zero ⇒ its highest degree coeff. is zero. ><</p>
- Conclude: |K| ≥ (q/4)ⁿ

Comparing the bounds

- Simple: |K| ≥ q^{n/2}
- [Dvir]: $|K| \ge q^n/n!$
- [SS]: $|K| \ge q^n/4^n$
- [SS] improves Simple even when q (large)
 constant and n → ∞ (in particular, allows q < n)
- [MockenhauptTao, Dvir]:

$$\exists K \text{ s.t. } |K| \leq q^{n}/2^{n-1} + O(q^{n-1})$$

Can we do even better?

Part III: Randomness Mergers & Extractors

Context

- One of the motivations for Dvir's work:
 - Build better "randomness extractors"
 - Approach proposed in [Dvir-Shpilka]
 - Following [Dvir], new "randomness merger" and analysis given by [Dvir-Wigderson]
 - Led to "extractors" matching known constructions, but not improving them ...

What are Extractors? Mergers? ... can we improve them?

Randomness in Computation

Readily available Support randomness F(X)X industry: Alg Distribution A Jniform Randomness **Processors** Prgs, (seeded) extractors, limited independence generators, epsilon-biased Distribution B generators, Condensers, mergers,

September 23, 2010

Mutliplicities @ Stanford

Randomness Extractors and Mergers

Extractors:

- Dirty randomness → Pure randomness
 (Biased, correlated) (Uniform, independent ... nearly)
 + small pure seed
- Mergers: General primitive useful in the context of manipulating randomness.
 - k random variables → 1 random variable

(One of them uniform)

(high entropy)

(Don't know which, others potentially correlated)

+ small pure seed

Merger Analysis Problem

- Merger(X₁,...,X_k; s) = f(s), where X₁, ..., X_k ∈ F_qⁿ; s ∈ F_q and f is deg. k-1 function mapping F → Fⁿ s.t. f(i) = X_i. (f is the curve through X₁,...,X_k)
- Question: For what choices of q, n, k is Merger's output close to uniform?
- Arises from [DvirShpilka'05, DvirWigderson'08].
 - "Statistical high-deg. version" of Kakeya problem.

Concerns from Merger Analysis

- [DW] Analysis: Worked only if q > n.
 - So seed length = log₂ q > log₂ n
 - Not good enough for setting where k = O(1), and $n \to \infty$.
 - (Would like seed length to be O(log k)).
- Multiplicity technique:
 - seems bottlenecked at mult = n.

General obstacle in multiplicity method

- Can't force polynomial Q to vanish with too high a multiplicity. Gives no benefit.
- E.g. Kakeya problem: Why stop at mult = n?
 - Most we can hope from Q is that it vanishes on all of qn;
 - Once this happens, Q = 0, if its degree is < q in each variable.
 - So Q|_L is of degree at most qn, so mult n suffices. Using larger multiplicity can't help!
 - Or can it?

Extended method of multiplicities

- (In Kakeya context):
 - Perhaps vanishing of Q with high multiplicity at each point shows higher degree polynomials (deg > q in each variable) are identically zero?
 - (Needed: Condition on multiplicity of zeroes of multivariate polynomials .)
 - Perhaps Q can be shown to vanish with high multiplicity at each point in Fⁿ.
 - (Technical question: How?)

Vanishing of high-degree polynomials

- Mult(Q,a) = multiplicity of zeroes of Q at a.
- I(Q,a) = 1 if mult(Q,a) > 0 and 0 o.w. = min{1, mult(Q,a)}
- Schwartz-Zippel: for any S ⊂ F
 ∑ I(Q,a) ≤ d. |S|ⁿ⁻¹ where sum is over a ∈ Sⁿ
- Can we replace I with mult above? Would strengthen S-Z, and be useful in our case.
- [DKSS '09]: Yes ... (simple inductive proof ... that I can never remember)

Multiplicities?

- Q(X₁,...,X_n) has zero of mult. m at a = (a₁,...,a_n) if all (Hasse) derivatives of order < m vanish.</p>
- Hasse derivative = ?
 - Formally defined in terms of coefficients of Q, various multinomial coefficients and a.
 - But really ...
 - The i = (i1,..., in)th derivative is the coefficient of $z_1^{i1}...z_n^{in}$ in Q(z + a).
 - Even better ... coeff. of zⁱ in Q(z+x)
 - (defines ith derivative Q_i as a function of x; can evaluate at x = a).

Key Properties

- Each derivative is a linear function of coefficients of Q. [Used in [GS'98], [SS'09].] (Q+R)_i = Q_i + R_i
- Q has zero of mult m at a, and S is a curve that passes through a, then Q|_S has zero of mult m at a. [Used for lines in prior work.]
- Q_i is a polynomial of degree deg(Q) Σ_j i_i (not used in prior works)
- $Q_{i} = (Q_{i})_{j} \neq Q_{i+j}, \text{ but } Q_{i+j}(a) = 0 \Rightarrow (Q_{i})_{j}(a) = 0$
- Q vanishes with mult m at a
 - \Rightarrow Q_i vanishes with mult m \sum_{j} i_i at a.

Propagating multiplicities (in Kakeya)

- Find Q that vanishes with mult m on K
- For every i of order m/2, Q_i vanishes with mult m/2 on K.
- Conclude: Q, as well as all derivatives of Q of order m/2 vanish on Fⁿ
 - \Rightarrow Q vanishes with multiplicity m/2 on Fⁿ
- Next Question: When is a polynomial (of deg > qn, or even qn) that vanishes with high multiplicity on qn identically zero?

Back to Kakeya

- Find Q of degree d vanishing on K with mult m. (can do if (m/n)ⁿ |K| < (d/n)ⁿ ⇔ dⁿ > mⁿ |K|)
- Conclude Q vanishes on Fⁿ with mult. m/2.
- Apply Extended-Schwartz-Zippel to conclude

$$(m/2) q^n < d q^{n-1}$$

 $\Leftrightarrow (m/2) q < d$
 $\Leftrightarrow (m/2)^n q^n < d^n = m^n |K|$

- Conclude: |K| ≥ (q/2)ⁿ
- Tight to within 2+o(1) factor!

Consequences for Mergers

- Can analyze [DW] merger when q > k very small, n growing;
 - Analysis similar, more calculations.
 - Yields: Seed length log q (independent of n).
- By combining it with every other ingredient in extractor construction:
 - Extract all but vanishing entropy (k o(k) bits of randomness from (n,k) sources) using O(log n) seed (for the first time).

Other applications

- [Woodruff-Yekhanin '05]: An elegant construction of novel "LDCs (locally decodable codes)". [Outclassed by more recent Yekhanin/Efremenko constructions.]
- [Kopparty-Lev-Saraf-S. '09]: Higher dimensional Kakeya problems.
- [Kopparty-Saraf-Yekhanin 'yesterday]: Locally decodable codes with Rate → 1.

Conclusions

- New (?) technique in combinatorics ...
- Polynomial method + Multiplicity method
 - Supporting evidence:
 - List decoding
 - Kakeya sets
 - Extractors/Mergers
 - Locally decodable codes ...

Thank You