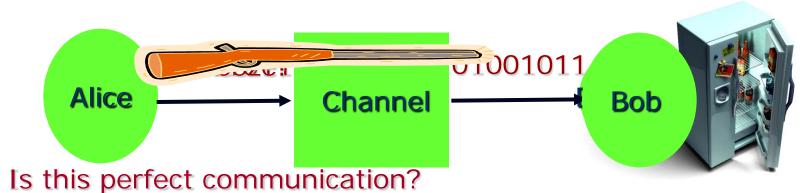
Semantic Goal-Oriented Communication

Madhu Sudan Microsoft Research + MIT


Joint with Oded Goldreich (Weizmann) and Brendan Juba (MIT).

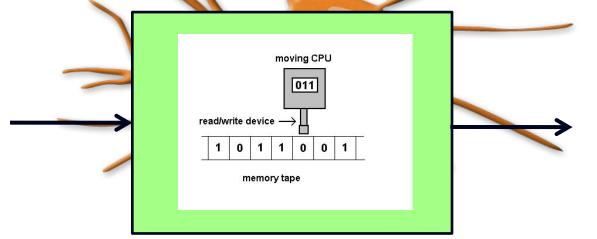
Disclaimer

Work in progress (for ever) ...

 Comments/Criticisms/Collaboration/Competition welcome.

The Meaning of Bits

- What if Alice is trying to send instructions?
 - Aka, an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?


Miscommunication (in practice)

- Exchanging (powerpoint) slides.
 - Don't render identically on different laptops.
- Printing on new printer.
 - User needs to "learn" the new printer, even though printer is quite "intelligent".
- Many such examples ...
 - In all cases, sending bits is insufficient.
 - Notion of meaning ... intuitively clear.
 - But can it be formalized?
 - Specifically? Generically?
 - While conforming to our intuition

Modelling Computing

Classically: Turing Machine/(von Neumann) RAM.

Described most computers being built?

 Modern computers: more into communication than computing.

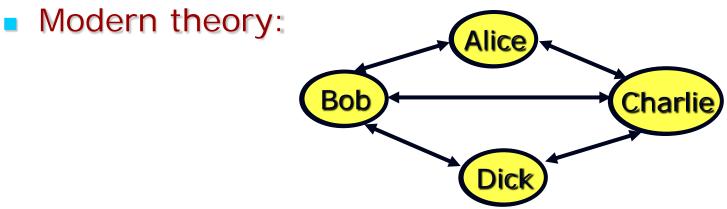
- What is the mathematical model?
- Do we still have universality?

2/2/2009

Bits vs. their meaning

- Say, User and Server know different programming languages. Server wishes to send an algorithm A to User.
 - A = sequence of bits ... (relative to prog. language)
- Bad News: Can't be done
 - For every User, there exist algorithms A and A', and Servers S and S' such that S sending A is indistinguishable (to User) from S' sending A'
- Good News: Need not be done.
 - From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.
- What should be communicated? Why?

2/2/2009


Aside: Why communicate?

2/2/2009

Classical "Theory of Computing"

$$X \longrightarrow F \longrightarrow F(X)$$

Issues: Time/Space on DFA? Turing machines?

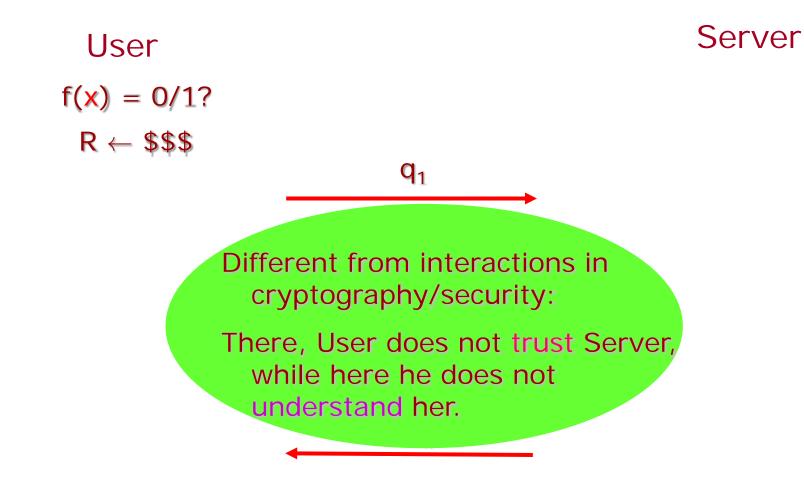
 Issues: Reliability, Security, Privacy, Agreement?
If communication is so problematic, then why not "Just say NO!"?

Motivations for Communication

- Communicating is painful. There must be some compensating gain.
- What is User's Goal?
 - "Control": Wants to alter the state of the environment.
 - "Intellectual": Wants to glean knowledge (about universe/environment).
- Thesis: By studying the goals, can enable User to overcome linguistic differences (and achieve goal).

2/2/2009

Part II: Computational Motivation


Computational Goal for Bob

Why does User want to learn algorithm?

- Presumably to compute some function f (A is expected to compute this function.)
- Lets focus on the function f.
- Setting:
 - User is prob. poly time bounded.
 - Server is computationally unbounded, does not speak same language as User, but is "helpful".
 - What kind of functions f?
 - E.g., uncomputable, PSPACE, NP, P?

2/2/2009

Setup

Computes $P(x,R,a_1,...,a_k)$

Hopefully P(x,...) = f(x)!

2/2/2009

Intelligence & Cooperation?

- For User to have a non-trivial interaction, Server must be:
 - Intelligent: Capable of computing f(x).
 - Cooperative: Must communicate this to User.
- Formally:
 - Server S is <u>helpful</u> (for f) if
 - ∃ some (other) user U' s.t.

 $\forall x, starting states \sigma of the server$ (U'(x) \leftrightarrow S(σ)) outputs f(x)

Successful universal communication

- Universality: Universal User U should be able to talk to any (every) helpful server S to compute f.
- Formally:

U is universal, if
∀ helpful S, ∀ σ, ∀ x
(U(x) ↔ S(σ)) = f(x) (w.h.p.)

- What happens if S is not helpful?
 - Paranoid view ⇒ output "f(x)" or "?"
 - Benign view \Rightarrow Don't care (everyone is helpful)

Main Theorems [Juba & S. '08]

- If f is PSPACE-complete, then there exists a funiversal user who runs in probabilistic polynomial time.
 - Extends to checkable problems
 - (NP ∩ co-NP, breaking cryptosystems)
 - S not helpful ⇒ output is safe

- Conversely, if there exists a f-universal user, then f is PSPACE-computable.
 - Scope of computation by communication is limited by misunderstanding (alone).

2/2/2009

Proofs?

Positive result:

- $f \in PSPACE \Rightarrow$ membership is verifiable.
- User can make hypothesis about what the Server is saying, and use membership proof to be convinced answer is right, or hypothesis is wrong.

Negative result:

- In the absence of proofs, sufficiently rich class of users allow arbitrary initial behavior, including erroneous ones.
- (Only leads to finitely many errors ...)

Implications

No universal communication protocol 😕

- If there were, should have been able to solve every problem (not just (PSPACE) computable ones).
- But there is gain in communication:
 - Can solve more complex problems than on one's own, but not every such problem.
- Resolving misunderstanding? Learning Language?
 - Formally No! No such guarantee.
 - Functionally Yes! If not, how can user solve such hard problems?

Principal Criticisms

- Solution is no good.
 - Enumerating interpreters is too slow.
 - Approach distinguishes right/wrong; does not solve search problem.
 - Search problem <u>needs</u> new definitions to allow better efficiency.
- Problem is not the right one.
 - Computation is not the goal of communication. Who wants to talk to a PSPACE-complete server?

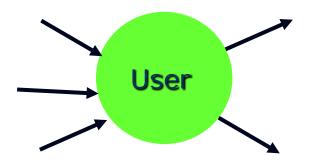
2/2/2009

Part III: Generic Goals

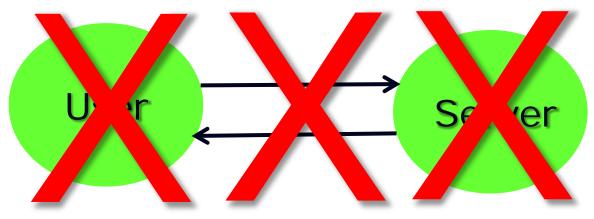
2/2/2009

Generic Communication [Goldreich, J., S.]

- Not every goal is computational!
 - Even if it is, is Semantic Communication only possible is Server is "much better" than User?
- What are generic goals?
 - Why do we send emails?
 - Why do I browse on Amazon?
 - Why do we listen to boring lectures?
 - (or give inspirational ones ③)
- Seemingly rich diversity


Universal Semantics for such Goals?

- Can we still achieve goal without knowing common language?
 - Seems feasible ...
 - If user can detect whether goal is being achieved (or progress is being made).
 - Just need to define
 - Sensing Progress?
 - Helpful + Universal?
 - ••••
 - Goal?
 - User?


2/2/2009

Modelling User/Interacting agents

- (standard AI model)
- User has state and input/output wires.
 - Defined by the map from current state and input signals to new state and output signals.

Generic Goal?

Goal = function of ?

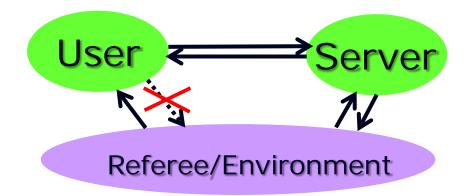
- User? But user wishes to change actions to achieve universality!
- Server? But server also may change behaviour to be helpful!
- Transcript of interaction? How do we account for the many different languages?

Generic Goals

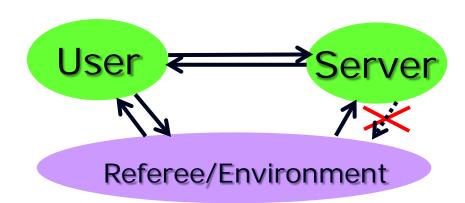
- Key Idea: Introduce 3rd entity: Referee
 - Poses tasks to user.
 - Judges success.

- Referee (just another agent)
- Boolean Function determining if the state evolution of the referee reflects successful achievement of goal.

User


Class of users/servers.

Server


Referee/Environment

Generic Goals

Pure Control

Pure Informational

2/2/2009

Sensing & Universality (Theorems)

- To achieve goal, User should be able to sense progress.
 - I.e., user should be compute a function that (possibly with some delay, errors) reflects achievement of goals.
 - "User simulates Referee"
- Generalization of positive result:
 - Generic goals (with technical conditions) universally achievable if 3 sensing function.
- Generalization of negative result:
 - If non-trivial generic goal is achieved with sufficiently rich class of helpful servers, then it is safely achieved with every server.

Why is the paper so long?

- To capture fully general models ...
 - User/Server live for ever and Goal achievement is a function of infinite sequence of states.
 - User/Server should be allowed to be probabilistic.
 - Referee should be allowed to be nondeterministic.
 - Getting quantifiers right non-trivial.)

When Server is less powerful than User

- What should the goal be?
 - Can't expect server to solve (computational) problems user can't.
 - So what can user try to do? Why?
 - Ask Server: Repeat after me ...
 - Test if Server has some computational power ... solves simple (linear/quadratic time) problems.
 - Has memory ... can store/recall.
 - Can act (pseudo-)independently is not deterministic, produces incompressible strings.
 - Can challenge me with puzzles.
- Each Goal/combo can be cast in our framework.
 - (Sensing functions do exist; communication is essential to achieving Goals; problems are more about control ...)

(Generalized) Turing tests

- Distinguish between "Intelligent"/"Not"
- Distinguish between "Humans"/"Bots"
 - Generically:
 - Class of servers = H union N:
 - H = { (1,i) | i }
 - N = { (0,i) | i }
 - Referee: gets identity of server from server (b,s),; and after interaction between user and server, gets User's guess b'. Accepts if b = b'.

Sensing function exists? Depends on H vs. N.

Conclusions - 1

- Goals of communication.
 - Should be studied more.
 - Suggests good heuristics for protocol design:
 - What is your goal?
 - Server = Helpful?
 - User = Sensing?

References

Juba & S. (computational) ECCC TR07-084: <u>http://eccc.uni-trier.de/report/2007/084/</u>

Goldreich, Juba & S. (generic)
ECCC TR09-075: <u>http://eccc.uni-trier.de/report/2009/075/</u>

Juba & S. – 2. (examples) ECCC TR08-095: <u>http://eccc.uni-trier.de/report/2008/095/</u>

2/2/2009

Thank You!