Semantic Goal-Oriented Communication

Madhu Sudan Microsoft Research + MIT

Joint with Oded Goldreich (Weizmann) and Brendan Juba (MIT).

March 1. 2010

Disclaimers

Work in progress (for ever) ...

Feedback welcome.

Interruptions welcome during the talk.

```
... Alas, no algebra 🙁
```

The Meaning of Bits

What if Alice is trying to send instructions?

- Aka, an algorithm
- Does Bob understand the correct algorithm?
- What if Alice and Bob speak in different (programming) languages?

Miscommunication (in practice)

- Exchanging (powerpoint) slides.
 - Don't render identically on different laptops.
- Printing on new printer.
 - User needs to "learn" the new printer, even though printer is quite "intelligent".
- Many such examples ...
 - In all cases, sending bits is insufficient.
 - Notion of meaning ... intuitively clear.
 - But can it be formalized?
 - Specifically? Generically?
 - While conforming to our intuition

Bits vs. their meaning

- Say, User and Server know different programming languages. Server wishes to send an algorithm A to User.
 - A = sequence of bits ... (relative to prog. language)
- Bad News: Can't be done
 - For every User, there exist algorithms A and A', and Servers S and S' such that S sending A is indistinguishable (to User) from S' sending A'
- Good News: Need not be done.
 - From Bob's perspective, if A and A' are indistinguishable, then they are equally useful to him.

What should be communicated? Why?

March 1. 2010

Part I: Computational Motivation

March 1. 2010

Computational Goal for Bob

- Why does User want to learn algorithm?

Setup

Computes $P(x,R,a_1,...,a_k)$ Hopefully P(x,...) = f(x)!

March 1. 2010

Intelligence & Cooperation?

- For User to have a non-trivial interaction, Server must be:
 - Intelligent: Capable of computing f(x).
 - Cooperative: Must communicate this to User.
- Formally:
 - Server S is f-<u>helpful</u> if
 - ∃ some (other) user U' s.t.

 $\forall x, \text{ starting states } \sigma \text{ of the server}$ (U'(x) \leftrightarrow S(σ)) outputs f(x)

Successful universal communication

- Universality: Universal User U should be able to talk to any (every) f-helpful server S to compute f.
- Formally:
 U is f-universal, if
 ∀ f-helpful S, ∀ σ, ∀ x
 (U(x) ↔ S(σ)) = f(x) (w.h.p.)
- What happens if S is not helpful?
 - Paranoid view ⇒ output "f(x)" or "?"
 - Benign view \Rightarrow Don't care (everyone is helpful)

Main Theorems [Juba & S. '08]

- If f is PSPACE-complete, then there exists a funiversal user who runs in probabilistic polynomial time.
 - Extends to checkable ("compIP") problems
 - (NP \cap co-NP, breaking cryptosystems)
 - S not helpful ⇒ output is safe

- Conversely, if there exists a f-universal user, then f is PSPACE-computable (in "compIP")
 - Scope of computation by communication is limited by misunderstanding (alone).

March 1. 2010

Proofs?

Positive result:

- $f \in PSPACE \Rightarrow$ membership is verifiable.
- User can make hypothesis about what the Server is saying, and use membership proof to be convinced answer is right, or hypothesis is wrong. <u>Enumerate</u>, till hypothesis is right.

Negative result:

- In the absence of proofs, sufficiently rich class of users allow arbitrary initial behavior, including erroneous ones.
- (Only leads to finitely many errors ...)

Implications

Communication is not unboundedly helpful S

- If it were, should have been able to solve every problem (not just (PSPACE) computable ones).
- But there is gain in communication:
 - Can solve more complex problems than on one's own, but not every such problem.
- Resolving misunderstanding? Learning Language?
 - Formally No! No such guarantee.
 - Functionally Yes! If not, how can user solve such hard problems?

Principal Criticisms

- Solution is no good.
 - Enumerating hypotheses is too slow.
 - Approach distinguishes right/wrong; does not solve search problem.
 - Search problem <u>needs</u> new definitions to allow better efficiency.
- Problem is not the right one.
 - Computation is not the goal of communication. Who wants to talk to a PSPACE-complete server?

March 1. 2010

Part II: Generic Goals of Communication

March 1. 2010

Aside: Communication?

Classical "Theory of Computing"

$$X \longrightarrow F \longrightarrow F(X)$$

Issues: Time/Space on DFA? Turing machines?

 Issues: Reliability, Security, Privacy, Agreement?
 If communication is so problematic, then why not "Just say NO!"?

Communication: Example 1 (Printing)

Communication: Ex. 2 (Computation)

Communication: Ex. 3 (Web search) WWW Ρ $Q(WWW(P)) = \bigcirc?$

Communication: Ex. 4 (Intelligence?)

Aside: Modelling Computing

Classically: Turing Machine/(von Neumann) RAM.

Described most computers being built?

 Modern computers: more into communication than computing.

- What is the mathematical model of a communicating computer?
- What is universality?

Communication: Ex. 2 (Computation)

Modelling User/Interacting agents

- (standard AI model)
- User has state and input/output wires.
 - Defined by the map from current state and input signals to new state and output signals.

Generic Goal?

Goal = function of ?

- User? But user wishes to change actions to achieve universality!
- Server? But server also may change behaviour to be helpful!
- Transcript of interaction? How do we account for the many different languages?

Generic Goals

- Key Idea: Introduce 3rd entity: Referee
 - Poses tasks to user.
 - Judges success.

- Referee (just another agent)
- Boolean Function determining if the state evolution of the referee reflects successful achievement of goal.

User

Class of users/servers.

March 1. 2010

Server

Referee/Environment

Generic Goals

Pure Control

Pure Informational

March 1. 2010

Sensing & Universality

- To achieve goal, User should be able to sense progress.
 - I.e., user should be compute a function that (possibly with some delay, errors) reflects achievement of goals.
- Generalization of positive result:
 - Generic goals (with technical conditions) universally achievable if 3 sensing function.
- Generalization of negative result:
 - Sensing is necessary (in one-shot goals)
 - (In infinite goals, If non-trivial generic goal is achieved with sufficiently rich class of helpful servers, then it is safely achieved with every server.)

Conclusions

Is there a universal communication protocol?

- No! (All functions vs. PSPACE-computable functions).
- But can achieve "sensible" goals universally.
- But ... diversity of goals may be the barrier to universality.
- Goals of communication.
 - Should be studied more.
 - Suggests good heuristics for protocol design:
 - Server = Helpful?
 - User = Sensing?

Language Learning

Meaning = end effect of communication.

- [Dewey 1920s, Wittgenstein 1950s]
- What would make learning more efficient?
 - What assumptions about "language"?
 - How to do encapsulate it as "class" restrictions on users/servers.
 - What learning procedures are efficient?

Time to get back to meaningful conversation!

References

Juba & S. ECCC TR07-084: <u>http://eccc.uni-trier.de/report/2007/084/</u>

Goldreich, Juba & S. ECCC TR09-075: <u>http://eccc.uni-trier.de/report/2009/075/</u>

Thank You!

March 1. 2010