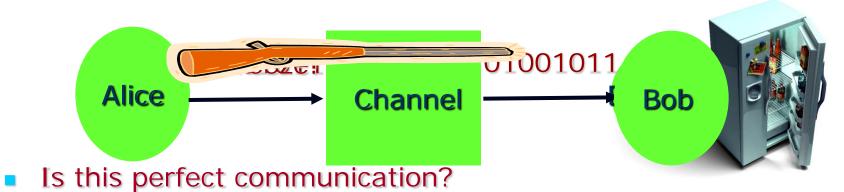
Semantic Goal-Oriented Communication

Madhu Sudan

Microsoft Research + MIT

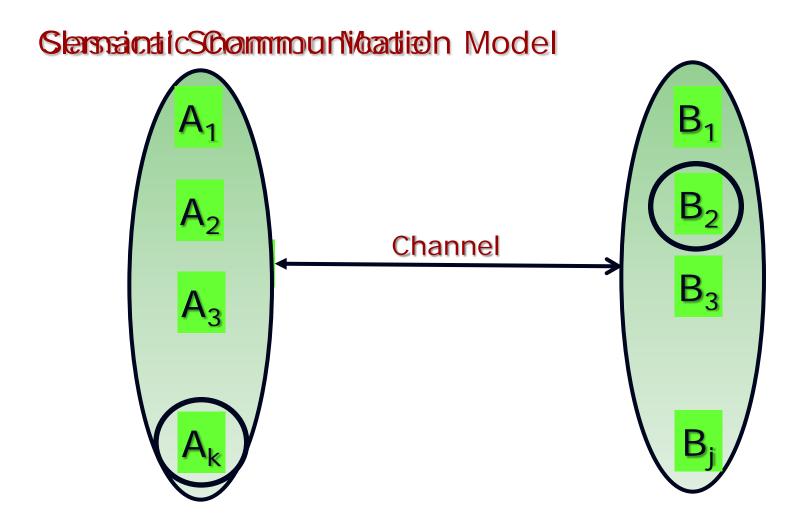

Joint with Oded Goldreich (Weizmann) and Brendan Juba (MIT).

Disclaimer

Work in progress (for ever) ...

Comments/Criticisms welcome.

The Meaning of Bits



- What if Alice is trying to send instructions?
 - Aka, an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?

Miscommunication (in practice)

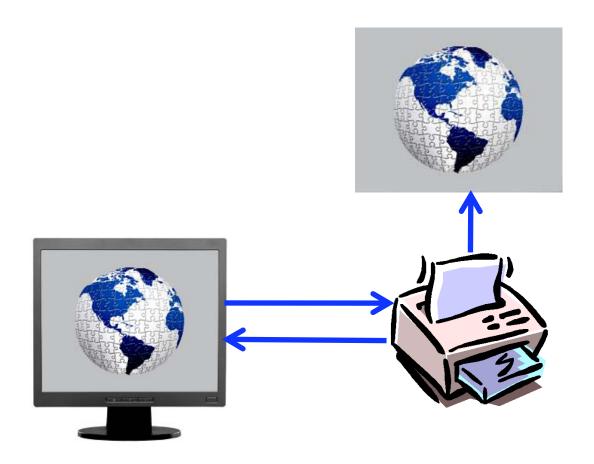
- Exchanging (powerpoint) slides.
 - Don't render identically on different laptops.
- Printing on new printer.
 - User needs to "learn" the new printer, even though printer is quite "intelligent".
- Many such examples ...
 - In all cases, sending bits is insufficient.
 - Notion of meaning ... intuitively clear.
 - But can it be formalized?
 - Specifically? Generically?
 - While conforming to our intuition

Modelling Miscommunication

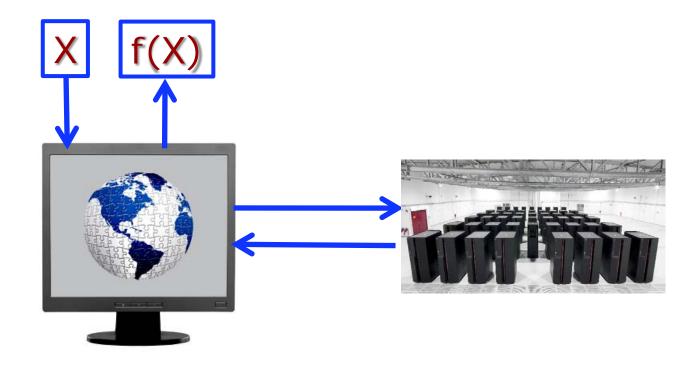
Basic issues

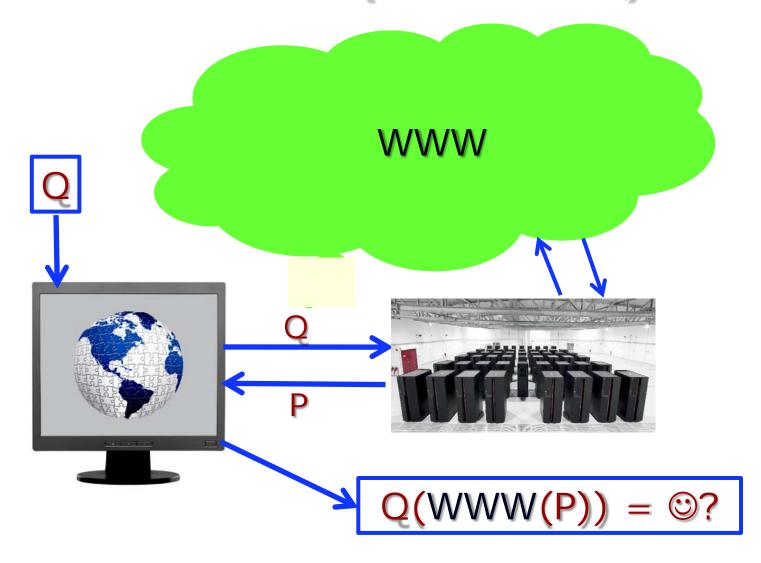
- Source of Miscommunication:
 - A_i doesn't know j
 - B_i doesn't know i
- But what do they wish to achieve?
 - Distinguish B_i from B_k?
 - What if they are indistinguishable?
- Thesis: Communication ought to have <u>Goal!!!</u>
 - Alice/Bob should strive to achieve Goal.
 - What is the Goal of communication? (or what are the Goals?)
 - Goal specifies problem, but what is a solution?

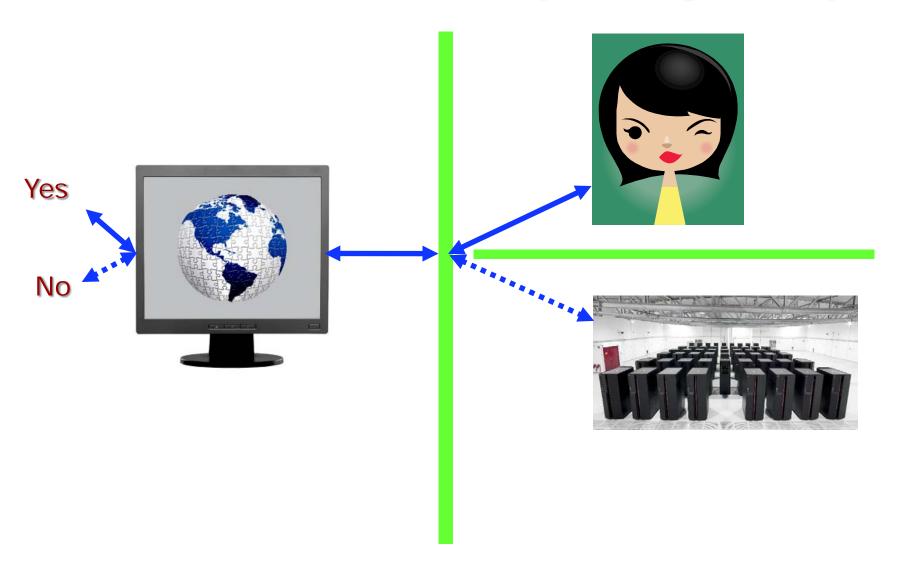
Examples of Goals


In future slides:

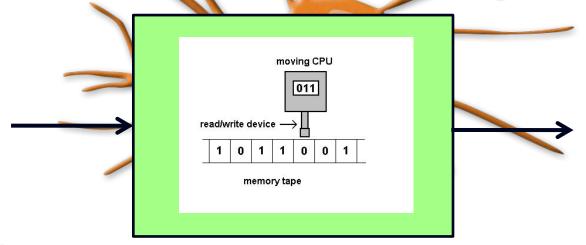
User communicates/interacts with Server.


Will try to look at 's goal.


Communication: Example 1 (Printing)


Communication: Ex. 2 (Computation)

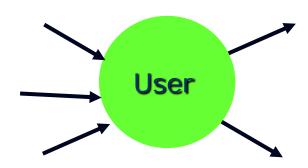
Communication: Ex. 3 (Web search)



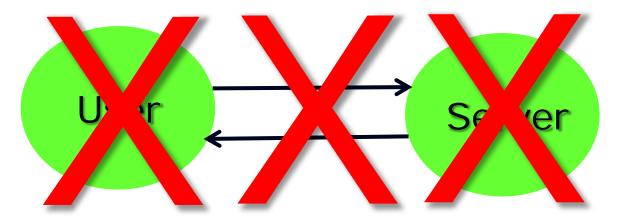
Communication: Ex. 4 (Intelligence?)

Aside: Modelling Computing

- Classically: Turing Machine/(yon Neumann) RAM.
 - Described most computers being built?

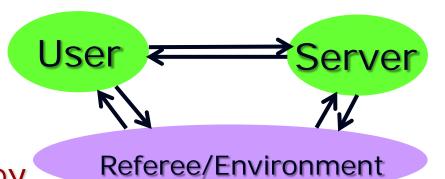

- Modern computers: more into communication than computing.
 - What is the mathematical model of a communicating computer? Why do they communicate? What are all the "communication problems"? What is universality?

Theory? or Practice?

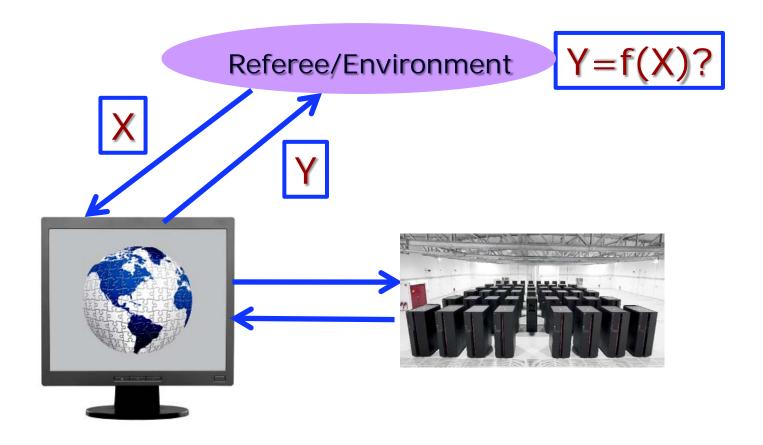

- Problems: Motivated by practice.
- But to address them:
 - Need a deeper theory.
 - One that understands misunderstanding.
 - In the limit ... should be able to learn languages, assign meaning etc. – to achieve goals (of communication).
 - Ad-hoc solutions unacceptable.
- This talk: A starting point for the theory.

Modelling User/Interacting agents

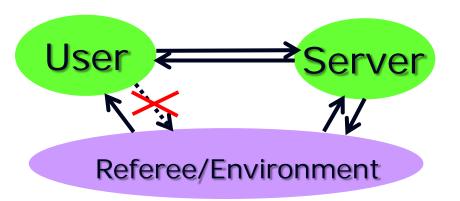
- (standard AI model)
- User has state and input/output wires.
 - Defined by the map from current state and input signals to new state and output signals.


Generic Goal?

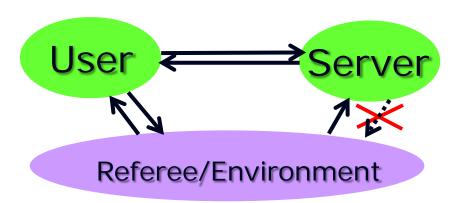
- Goal = function of ?
 - User? But user wishes to change actions to achieve universality!
 - Server? But server also may change behaviour to be helpful!
 - Transcript of interaction? How do we account for the many different languages?


Generic Goals

- Key Idea: Introduce 3rd entity: Referee
 - Poses tasks to user.
 - Judges success.


- Generic Goal specified by
 - Referee (just another agent)
 - Boolean Function determining if the state evolution of the referee reflects successful achievement of goal.
 - Class of users/servers.

Referee for Computation (Ex. 2)



Broad subclasses of Goals

Pure Control

Pure Informational

Sensing & Universality

- To achieve goal:
 - Server should be "helpful"
 - User should be able to "sense progress".
 - I.e., user should be compute a function that mimics referee's verdict.
- General positive result [GJS '09]:
 - Generic goals (with appropriate definitions) universally achievable if ∃ sensing function.
- General negative result [GJS '09]:
 - Sensing is necessary (in sufficiently general classes of users/servers).

Concrete Example: Computation

Computational Goal for User

User wants to compute function f on input x.

Setting:

- User is prob. poly time bounded.
- Server is computationally unbounded, does not speak same language as User, but is "helpful".
- What kind of functions f?
 - E.g., uncomputable, PSPACE, NP, P?

Setup

User Server

$$f(x) = 0/1?$$

$$R \leftarrow $\$$$

Different from interactions in cryptography/security:

There, User does not trust Server, while here he does not understand her.

Hopefully
$$P(x,...) = f(x)!$$

Intelligence & Cooperation?

- For User to have a non-trivial interaction, Server must be:
 - Intelligent: Capable of computing f(x).
 - Cooperative: Must communicate this to User.
- Formally:
 - Server S is <u>helpful</u> if
 - ∃ some (other) user U' s.t.
 - \forall x, starting states σ of the server $(U'(x) \leftrightarrow S(\sigma))$ outputs f(x)

Successful universal communication

- Universality: Universal User U should be able to talk to any (every) helpful server S to compute f.
- Formally:
 - U is f-universal, if
 ∀ helpful S, ∀ σ, ∀ x
 (U(x) ↔ S(σ)) = f(x) (w.h.p.)
- What happens if S is not helpful?
 - Benign view ⇒ Don't care (everyone is helpful)

Main Theorems [Juba & S. '08]

- If f is in PSPACE, then there exists a f-universal user who runs in probabilistic polynomial time.
 - If we require server to only solve f, then hold for every checkable ("compIP") problem.
 - Still includes NP ∩ co-NP, breaking crypto
 - S not helpful ⇒ output is safe

- Conversely, if there exists a f-universal user, then f is PSPACE-computable (in "compIP")
 - Scope of computation by communication is limited by <u>misunderstanding</u> (alone).

Proofs?

Positive result:

- f ∈ PSPACE ⇒ membership is verifiable.
- User can make hypothesis about what the Server is saying, and use membership proof to be convinced answer is right, or hypothesis is wrong. <u>Enumerate</u>, till hypothesis is right.

Negative result:

- In the absence of proofs, sufficiently rich class of users allow arbitrary initial behavior, including erroneous ones.
- (Only leads to finitely many errors ...)

Implications

- Communication is not unboundedly helpful ⊗
 - If it were, should have been able to solve every problem (not just (PSPACE) computable ones).
- But there is gain in communication:
 - Can solve more complex problems than on one's own, but not every such problem.
- Resolving misunderstanding? Learning Language?
 - Formally No! No such guarantee.
 - Functionally Yes! If not, how can user solve such hard problems?

Implications for Language Learning

- Standard question in linguistics, cognition ...
 - What is a precondition for two entities to come to some "common understanding/language"?
 - Standard answers:
 - Humans seem to need little commonality (a child can learn any language)
 - But humans share enormous common physical needs and have large common genetic code?
 - Is all this necessary? "POS debate"
 - Our Answer: No. Compatible goals suffice.

Implications for Language Learning

- Well-explored theme in "linguistics"
 - Semantics learned by functional relevance.
 - But how does one have "common" grounding? Is this a purely a function of having common physical environment + needs?
 - Is there a purely intellectual basis for common grounding?
- Our answer: YES!

Towards Efficiency

- Learning of language is not efficient
 - User takes at least k steps to enumerate k possible servers (k possible languages).
 - Can this be made faster?

Answers:

- No! Not without assumptions on language ...
- Yes! If server and user are "broadminded", and have "compatible beliefs" [JS '10]

Broadmindedness, Compatible beliefs:

- Beliefs of server S:
 - Expects users chosen from distribution X.
 - Allows "typical" user to reach goal in time T.
- Beliefs of user U:
 - Anticipates some distribution Y on users that the server is trying to serve.
- Compatibility: $K = (1 |X Y|_{TV})$
- Theorem[JS]: U can achieve goal in time poly(T/K).

Conclusions

- Basis of semantic communucation: Model "miscommunication"
 - Can be done by allowing users/servers to be variable (members of a set).
- Such settings seem commonplace, especially in "natural communication", but no prior attempts to model them theoretically (in the context of information transmission).
- Can also look at the "compression" problem.
 - Unveils phenomena reflective of natural communication [Juba, Kalai, Khanna, S. '10]

Thank You!