Testing Affine-Invariant Properties

Madhu Sudan Microsoft

Surveys: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka.

May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties

Property Testing

- ... of functions from D to R:
 - Property $P \subseteq \{D \rightarrow R\}$
- Distance
 - $\delta(f,g) = \Pr_{x \in D} [f(x) \neq g(x)]$
 - δ(f,P) = min_{g ∈ P} [δ(f,g)]
 - f is ε -close to g (f \approx_{ϵ} g) iff δ (f,g) $\leq \varepsilon$.
- Local testability:
 - P is (k, ε, δ) -locally testable if $\exists k$ -query test T ■ f \in P \Rightarrow T^f accepts w.p. 1- ε .

 $\bullet \delta(f,P) > \delta \Rightarrow T^{f} \text{ accepts w.p. } \epsilon.$

Notes: want $k(\varepsilon, \delta) = O(1)$ for $\varepsilon, \delta = \Omega(1)$.

Classical Property Test: Linearity [BLR]

- Does f(x+y) = f(x) + f(y), for all x, y?
- Variation (Affineness):
 - Is f(x+y) + f(0) = f(x) + f(y), for all x, y?
 - (roughly $f(x) = a_0 + \sum_{i=1}^n a_i x_i$)
- Test: Pick random x,y and verify above.
- Obvious: f affine \Rightarrow passes test w.p. 1.
- BLR Theorem: If f is δ-far from every affine function, then it fails test w.p. Ω(δ).
- Ultimate goal of talk: To understand such testing results.

Affine-Invariant Properties

- Domain = K = GF(qⁿ) (field with qⁿ elements)
- Range = GF(q); q = power of prime p.
- P forms F-vector space.
- P <u>invariant</u> under affine transformations of domain.
 - Affine transforms? $x \mapsto a.x + b, a \in K^*, b \in K$.
 - Invariance? $f \in P \Rightarrow g_{a,b}(x) = f(ax+b) \in P$.
 - affine permutation of domain leaves P unchanged".
- Quest: What makes affine-invariant property testable?

(My) Goals

- Why?
 - BLR test has been very useful (in PCPs, LTCs).
 - Other derivatives equally so (low-degree test).
 - Proof magical! Why did 3 (4) queries suffice?
 - Can we find other useful properties?
- Program:
 - Understand the proof better (using invariance).
 - Get structural understanding of affine-invariant properties, visavis local testability.
 - Get better codes/proofs?

Why's?

Why Invariance

- Natural way to abstract/unify common themes (in property testing).
- Graph properties, Boolean, Statistical etc.?
- Why affine-invariance:
 - Abstracts linearity (affine-ness) testing.
 - Low-degree testing
 - BCH testing ...
- Why F-vector space?
 - Easier to study (gives nice structure).
 - Common feature (in above + in codes).

Basic Implications of Linearity [BHR]

- If P is linear, then:
 - Tester can be made non-adaptive.
 - Tester makes one-sided error
 - ($f \in P \Rightarrow$ tester always accepts).
- Motivates:
 - Constraints:
 - k-query test => constraint of size k:
 - value of f at $\alpha_1, \dots, \alpha_k$ constrained to lie in subspace.
 - Characterizations:
 - If non-members of P rejected with positive probability, then P characterized by local constraints.
 - functions satisfying all constraints are members of P.

Pictorially

- f = assgm't to left
- Right = constraints
- Characterization of P: P = {f sat. all constraints}

Back to affine-invariance: More Notes

- Why $K \rightarrow F$?
 - Very few permutations (|K|²) !!
 - Still "2-transitive"
 - Includes all properties from Fⁿ to F that are affine-invariant over Fⁿ.
 - Hope: Maybe find a new range of parameters?)
- Contrast with "linear-invariance" [Bhattacharyya et al.]
 - Linear vs. Affine.
 - Arbitrary P vs. F-vector space P
 - Linear over Fⁿ vs. Affine over K = GF(qⁿ).

Affine-invariance & testability

Goal of this talk

- Definition: Single-orbit-characterization (S-O-C)
- Known testable affine-invariant properties (all S-O-C!).
- Structure of Affine-invariant properties.
- Non testability results
- Open questions

Single-orbit-characterization (S-O-C)

- Many common properties are given by
 - (Affine-)invariance
 - Single constraint.
- Example: Affineness over GF(2)ⁿ:
 - Affineness is affine-invariant.
 - $f(00000) f(100000) \neq f(010000) f(110000)$
- S-O-C: Abstracts this notion.
 - Suffices for testability [Kaufman+S'08]
 - Unifies all known testability results!!
 - Nice structural properties.

S-O-C: Formal Definition

Constraint:

Orbit of constraint = {C o π }_π, π affine.
 C o π = (π(α₁),...,π(αk); V).

P has k-S-O-C, if orbit(C) characterizes P.

Theorem [Kaufman-S.'08]:

■ If P has a k-S-O-C, then P is k-locally testable.

Affine-invariance & testability

Theorem [Kaufman-S.'08]:
 If P has a k-S-O-C, then P is k-locally testable.

But who has k-S-O-C?
 Affine functions:

 over affine transforms of Fⁿ
 Degree d polynomials:

 again, over affine transforms of Fⁿ

- Reed-Muller Property:
 - View domain as Fⁿ (n-variate functions)
 - Parameter d.
 - RM(d) = n-var. polynomials of degree $\leq d$.
- Known to be q^{O(d/q)}-locally testable:
 - Test: Test if f restricted to O(d/q)-dimensional subspace is of degree d.
 - Analysis: [Kaufman-Ron] (see appendix 1).
- Single-Orbit?
 - Yes naturally over affine transforms of Fⁿ.
 - Yes unnaturally over K (field of size Fⁿ).

- Sparse properties:
 - Parameter t
 - |P| ≤ |K|^t
- Testability:
 - Conditioned on "high-distance" [Kaufman-Litsyn, Kaufman-S.]. (no need for aff. inv.)
 - Unconditionally
 - Grigorescu, Kaufman, S.], [Kaufman-Lovett] (for prime q).
 - Also S-O-C.

- Intersections:
 - $P_1 \cap P_2$ always locally testable, also S-O-C.
- Sums:
 - $P_1 + P_2 (= \{f_1 + f_2 | f_i \in P_i\})$
 - S-O-C iff P₁ and P₂ are S-O-C [BGMSS'11]
- Lifts [BMSS'11]
 - Suppose $F \subseteq L \subseteq K$.
 - $P \subseteq \{L \rightarrow F\}$ has k-S-O-C, with constraint C.
 - Then Lift_{L → K}(P) = property characterized by K-orbit(C).
 - By Definition: Lift(P) is k-S-O-C.

Known Testable Properties - ∞

- Finite combination of Lifts, Intersections, Sums of Sparse and Reed-Muller properties.
 - Known: They are testable (for prime q).
 - Open: Are they the only testable properties?
 If so, Testability ≡ Single-Orbit.
 - First target: n = prime:
 - no lifts/intersections; only need to show that every testable property is sum of sparse and Reed-Muller property.

Affine-Invariant Properties: Structure

May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties

22 of 40

Preliminaries

- Every function from K → K, including K → F, is a polynomial in K[x]
 - So every property P = {set of polynomials}.
 - Is set arbitrary? Any structure?
- Alternate representation:
 - $Tr(x) = x + x^{q} + x^{q^{2}} + ... + x^{q^{n-1}}$
 - Tr(x+y) = Tr(x)+Tr(y); $Tr(\alpha x) = \alpha Tr(x)$, $\alpha \in F$.
 - Tr: $K \rightarrow F$.
 - Every function from K → F is Tr(f) for some polynomial f ∈ K[x].
 - Any structure to these polynomials?

Example

- $F = GF(2), K = GF(2^n).$
- Suppose P contains $Tr(x^{11} + x^3 + 1)$.
- What other functions must P contain (to be affine-invariant)?
- Claims:
 - Let D = {0,1,3,5,9,11}.
 - Then P contains every function of the form Tr(f), where f is supported on monomials with degrees from D.
 - So Tr(x⁵), Tr(αx⁹+βx⁵), Tr(x¹¹+x⁵+x³+x)+1 ∈ P.
 How? Why?

Structure - 1

Definitions:

Deg(P) = {d | ∃ f ∈ P, with x^d ∈ supp(f)}
Fam(D) = {f: K → F | supp(f) ⊆ D}

Proposition: For affine-invariant property P P = Fam(Deg(P)).

Structure - 2

Definitions:

- Shift(d) = {d, q.d, q².d, ... } mod (qⁿ-1).
 D is <u>shift-closed</u> if Shift(D) = D.
 e ≤ d : e = e₀ + e₁ p + ...; d = d₀ + d₁ p + ...; e ≤ d if e_i ≤ d_i for all i.
- Shadow(d) = {e ≤ d};
 Shadow(D) = ∪_{d ∈ D} Shadow(d).
 D is <u>shadow-closed</u> if Shadow(D) = D.

Structure - 3

 Proposition: For every affine-invariant property P, Deg(P) is p-shadow-closed and q-shift-closed.
 (Shadowing comes from affine-transforms; Shifts come from range being F).

Proposition: For every p-shadow-closed, q-shiftclosed family D, Fam(D) is affine-invariant and D = Deg(Fam(D))

Example revisited

- Tr(x¹¹ + x³) ∈ P
 - Deg(P) > 11, 3 (definition of Deg)
 - Deg(P) > 11, 9, 5, 3, 1, 0 (shadow-closure)
 - $Deg(P) \ni Tr(x^{11})$, $Tr(x^9)$ etc. (shift-closure).
 - Fam(Deg(P)) ∋ Tr(x¹¹) etc. (definition of Fam).
 - P > Tr(x¹¹) (P = Fam(Deg(P)))

What kind of properties have k-S-O-C?

(Positive results interpreted structurally)

If propery has all degrees of q-weight at most k then it is RM and has (q^k)-S-O-C:

• q-weight(d) = $\sum_{i} d_{i}$,

where $d = d_0 + d_1 q + ...$

- Also, if P = Fam(D) & D = Shift(S) for small shadow-closed S, then P is k(|S|)-S-O-C.
 - Alternate definition of sparsity.)
- Other examples from Intersection, Sum, Lift.

May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties

What affine-invariant properties are not locally testable.

- Very little known.
- Specific examples:
 - GKS08: Exists a-i property with k-local constraint which is not k-locally characterized.
 - BMSS11: Exists k-locally characterized a-i property that is not testable.
- BSS'10: If wt(d) ≥ k for some d in Deg(P), then P does not have a k-local constraint.

Quest in lower bound

- Given degree set D (shadow-closed, shift-closed) prove it has no S-O-C.
- Equivalently: Prove there are no
 λ₁ ... λ_k ∈ F, α₁ ... α_k ∈ K such that
 Σ_{i=1}k λ_i α_i^d = 0 for every d ∈ D.
 Σ_{i=1}k λ_i α_i^d ≠ 0 for every minimal d ∉ D.
 Σ_{i=1}k λ_i α_i^d ≠ 0 for every minimal d ∉ D.

May 23-28, 2011

Bertinoro: Testing Affine-Invariant Properties

Non-testable Property - 1

- AKKLR (Alon, Kaufman, Krivelevich, Litsyn, Ron) Conjecture:
 - If a linear property is 2-transitive and has a klocal constraint then it is testable.
 - [GKS'08]: For every k, there exists affineinvariant property with 8-local constraint that is not k-locally testable.
 - $P = Fam(Shift(\{0,1\} \cup \{1+2,1+2^2,...,1+2^k\}))$.

Proof (based on [BMSS'11])

F = GF(2); K = GF(2ⁿ);

■ $P_k = Fam(Shift({0,1} \cup {1 + 2^i | i \in {1,...,k}}))$

If $Ker(M_i) = Ker(M_{i+1})$, then $Ker(M_{i+2}) = Ker(M_i)$

- Ker(M_{k+1}) = would accept all functions in P_{k+1}
- So Ker(M_i) must go down at each step, implying Rank(M_{i+1}) > Rank(M_i).

Stronger Counterexample

- GKS counterexample:
 - Takes AKKLR question too literally;
 - Of course, a non-locally-characterizable property can not be locally tested.
- Weaker conjecture:
 - Every k-locally characterized affine-invariant (2-transitive) property is locally testable.
 - Alas, not true: [BMSS]

[BMSS] CounterExample

- Recall:
 - Every known locally characterized property was locally testable
 - Every known locally testable property is S-O-C.
 - Need a locally characterized property which is (provably) not S-O-C.
 - Idea:
 - Start with sparse family P_i.
 - Lift it to get Q_i (still S-O-C).
 - Take intersection of superconstantly many such properties. $Q = \bigcap_i Q_i$

Example: Sums of S-O-C properties

- Suppose $D_1 = Deg(P_1)$ and $D_2 = Deg(P_2)$
- Then $Deg(P_1 + P_2) = D_1 \cup D_2$.
- Suppose S-O-C of P₁ is C₁: f(a₁) + ... + f(a_k) = 0; and S-O-C of P₂ is C₂: f(b₁) + ... + f(b_k) = 0.
- Then every $g \in P_1 + P_2$ satisfies:

 $\sum_{i,j} g(a_i b_j) = 0$

Doesn't yield S-O-C, but applied to random constraints in orbit(C₁), orbit(C₂) does!

• Proof uses wt(Deg(P_1)) $\leq k$.

Concluding

- Affine-invariance gives nice umbrella to capture algebraic property testing:
 - Important (historically) for PCPs, LTCs, LDCs.
 - Incorporates symmetry.
- Would be nice to have a complete characterization of testability of affine-invariant properties.
 - Understanding (severely) lacking.
- Know:
 - Can't be much better than Reed-Muller.
 - Can they be slightly better? YES!

Thank You!

May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties