Invariance in Property Testing

Madhu Sudan Microsoft Research

Based on: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka.

October 18, 2011

Invariance in Property Testing: Chicago

1 of 37

Property Testing

- Sublinear time algorithms:
 - Algorithms running in time o(input), o(output).
 - Probabilistic.
 - Correct on (approximation) to input.
 - Input given by oracle, output implicit.
 - Crucial to modern context
 - (Massive data, no time).
- Property testing:
 - Restriction of sublinear time algorithms to decision problems (output = YES/NO).
- Amazing fact: Many non-trivial algorithms exist!

Example 1: Polling

Is the majority of the population Red/Blue
 Can find out by random sampling.
 Sample size & margin of error
 Independent of size of population

Other similar examples: (can estimate other moments ...)

Example 2: Linearity

Can test for homomorphisms:

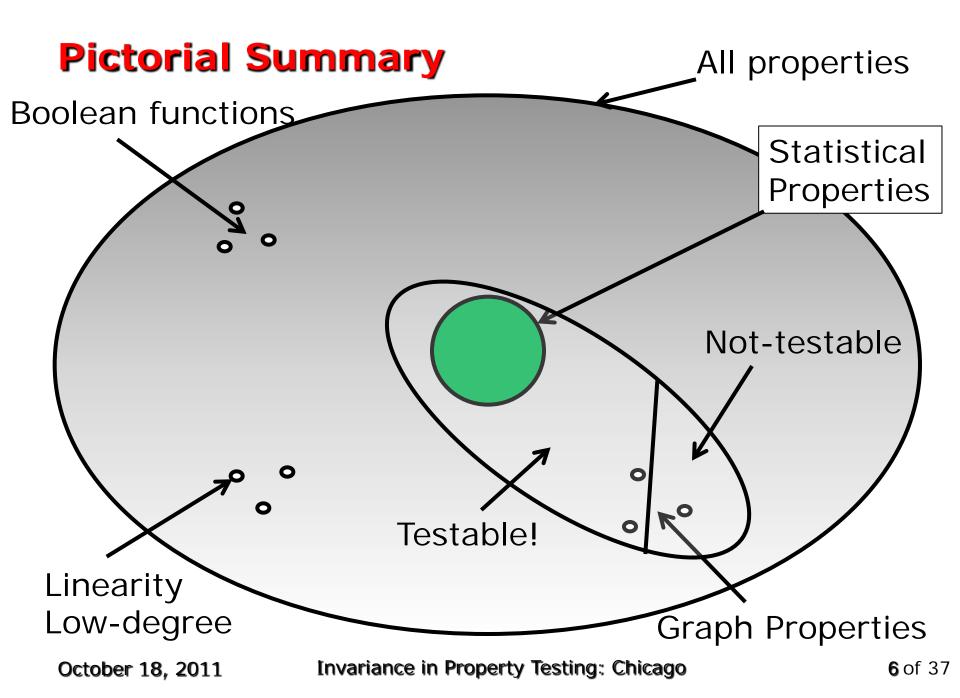
- Given: f: G → H (G,H finite groups), is f essentially a homomorphism?
- Test:

Pick x,y in G uniformly, ind. at random;
Verify f(x) ¢f(y) = f(x ¢y)

- Completeness: accepts homomorphisms w.p. 1
 (Obvious)
- Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 Not obvious, [BlumLubyRubinfeld'90])

History (slightly abbreviated)

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing; Formal definition.
- [Goldreich,Goldwasser,Ron]
 - Graph property testing; Systematic study.
- Since then ... many developments
 - More graph properties, statistical properties, matrix properties, properties of Boolean functions ...
 - More algebraic properties



Some (introspective) questions

- What is qualitatively novel about linearity testing relative to classical statistics?
- Why are the mathematical underpinnings of different themes so different?
- Why is there no analog of "graph property testing" (broad class of properties, totally classified wrt testability) in algebraic world?

Invariance?

- Property $P \sqsubseteq \{f : D \rightarrow R\}$
- Property P invariant under permutation (function)

 [™] D → D, if

f ₽ þ⇒ f o ¼ ₽ P

- Property P invariant under group G if & ½2 G, P is invariant under ¼.
- Observation: Different property tests unified/separated by invariance class.

Invariances (contd.)

Some examples:

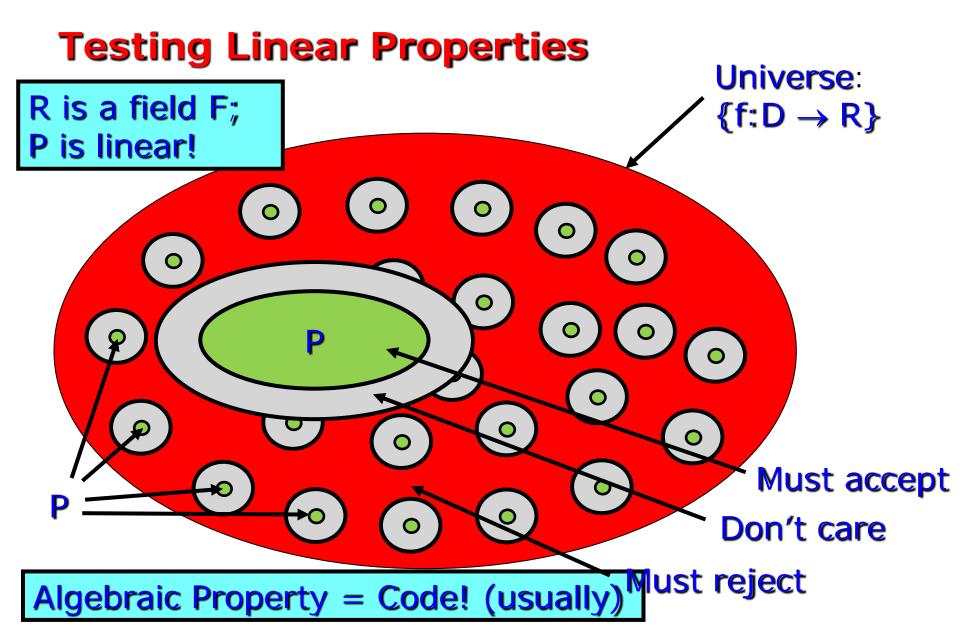
- Classical statistics: Invariant under all permutations.
- Graph properties: Invariant under vertex renaming.
- Boolean properties: Invariant under variable renaming.
- Matrix properties: Invariant under mult. by invertible matrix.
- Algebraic Properties = ?
- Goals:
 - Possibly generalize specific results.
 - Get characterizations within each class?
 - In algebraic case, get new (useful) codes?

Abstracting Linearity/Low-degree tests

- Affine Invariance:
 - Domain = Big field (GF(2ⁿ))

or vector space over small field (GF(2)ⁿ).
 Property invariant under affine transformations of domain (x → A.x + b)

- Linearity:
 - Range = small field (GF(2))
 - Property = vector space over range.



October 18, 2011 Invariance in Property Testing: Chicago

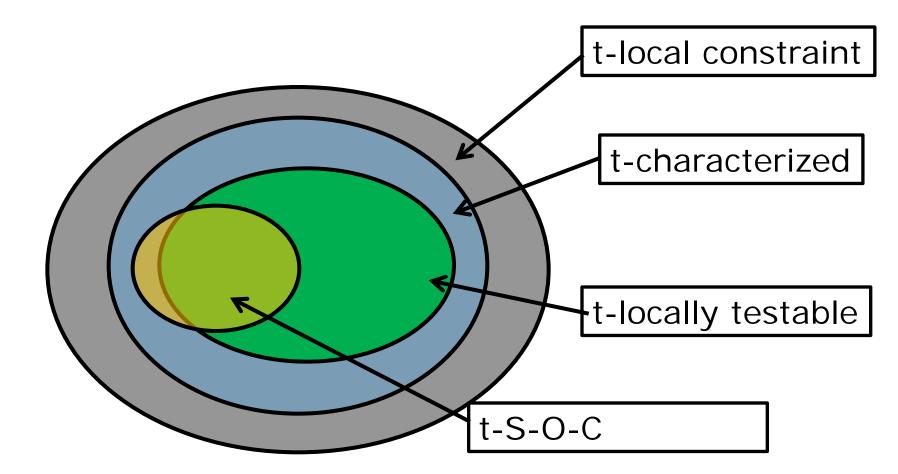
Why study affine-invariance?

- Common abstraction of properties studied in [BLR], [RS], [ALMSS], [AKKLR], [KR], [KL], [JPRZ].
 - Variations on low-degree polynomials)
- Hopes
 - Unify existing proofs
 - Classify/characterize testability
 - Find new testable codes (w. novel parameters)
- Rest of the talk: Brief summary of findings

Basic terminology

- Local Constraint:
 - Example: f(1) + f(2) = f(3).
 - Necessary for testing <u>Linear Properties</u> [BHR]
- Local Characterization:
 - Example: δx , y, f(x) + f(y) = f(x+y) \Leftrightarrow f \notin P
 - Aka: LDPC code, k-CNF property etc.
 - Necessary for <u>affine-invariant</u> linear properties.
- Single-orbit characterization:
 - One linear constraint + implications by affineinvariance.
 - Feature in all previous algebraic properties.

Affine-invariance & testability

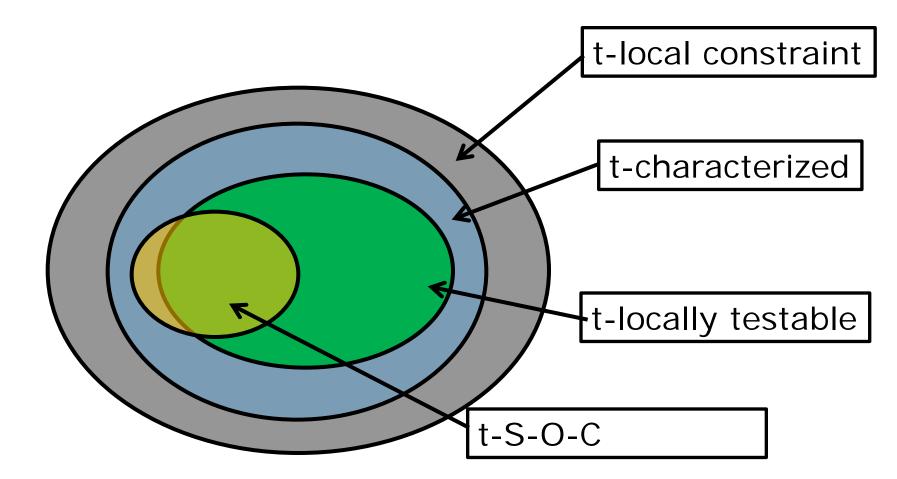


Invariance in Property Testing: Chicago

State of the art in 2007

[AKKLR]: t-constraint = t'-testable, for all linear affine-invariant properties?

Affine-invariance & testability



Invariance in Property Testing: Chicago

Some results

• [Kaufman+S.'07]: Single-orbit \Rightarrow Testable.

Proof: t-S-O-C ⇒ t-testable

- Property P (k-S-O-C) given by Q₁,...,Q_i; V & F^t
- $P = \{f \mid f(A(@_1)) \dots f(A(@_k)) \ge V, \& affine A: K^n \rightarrow K^n\}$
- Rej(f) = Prob_A [f(A(@₁)) ... f(A(@₁)) not in V]
- Wish to show: If Rej(f) < 1/t³, then δ(f,P) = O(Rej(f)).

Proof: BLR Analog

■ $\text{Rej}(f) = \text{Pr}_{x,y} [f(x) + f(y) \neq f(x+y)] < \frac{2}{3}$

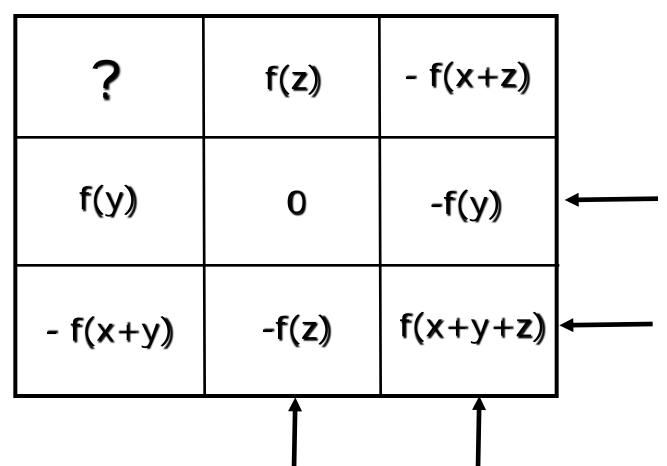
- Step 0: Show δ(f,g) small
- Step 1: $\forall x, Pr_{y,z} [Vote_x(y) \neq Vote_x(z)]$ small.

Step 2: Use above to show g is well-defined and a homomorphism.

October 18, 2011 Chicago: Testing Affine-Invariant Properties

Proof: BLR Analysis of Step 1

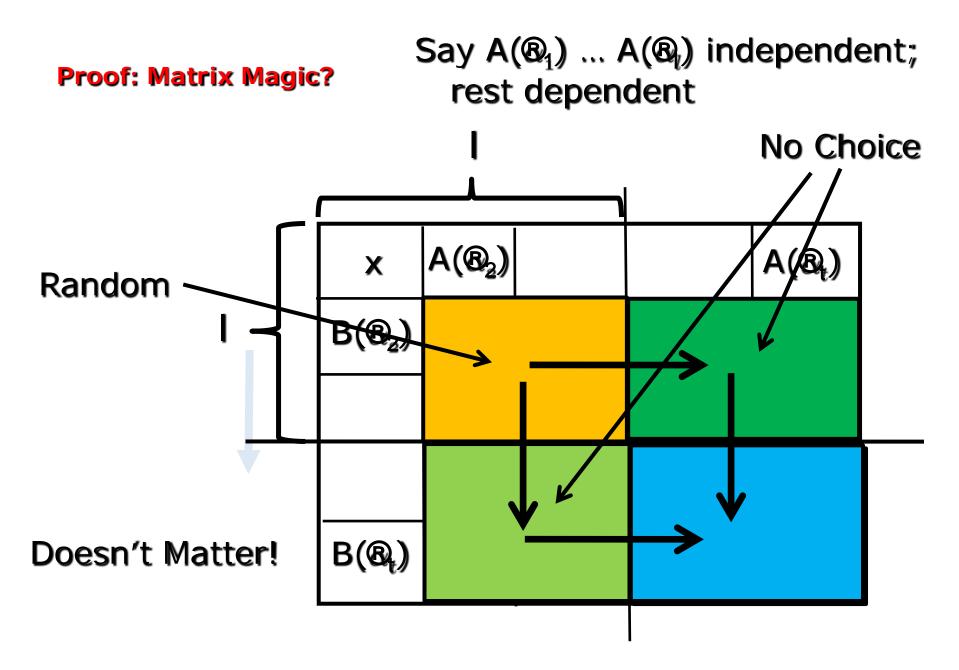
• Why is f(x+y) - f(y) = f(x+z) - f(z), usually?



Chicago: Testing Affine-Invariant Properties

Proof: Generalization

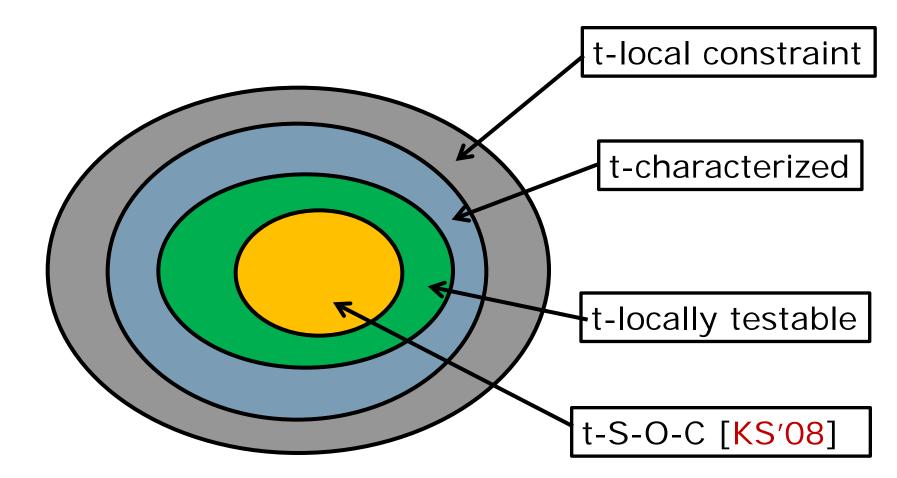
- $g(x) = \beta$ that maximizes, over A s.t. $A(@_1) = x$, $Pr_A [\beta, f(A(@_2), ..., f(A(@_k)) \ge V]$
- Step 0: δ(f,g) small.
- Vote_x(A) = β s.t. β, f(A(𝔅₂))...f(A(𝔅_k)) ≥ V (if such β exists)
- Step 1 (key): & x, whp Vote_x(A) = Vote_x(B).
 Step 2: Use above to show g & P.



Some results

• [Kaufman+S.'07]: Single-orbit \Rightarrow Testable.

Affine-invariance & testability

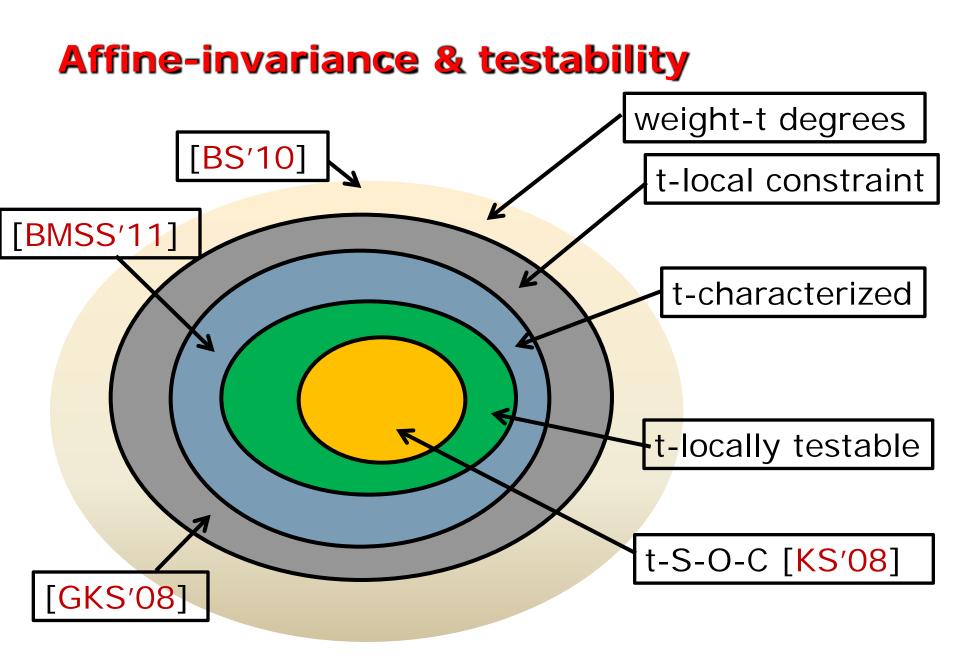


Invariance in Property Testing: Chicago

Some results

• [Kaufman+S.'07]: Single-orbit \Rightarrow Testable.

- Unifies known algebraic testing results.
- Converts testability to purely algebraic terms.
- Yields "Constraints = Char. = Testability" for vector spaces over <u>small fields</u>.
- Left open: Domain = <u>Big field</u>.
- Many "non-polynomial" testable properties
- [GKS'08]: Over big fields, Constraint ≠ Char.
- [BMSS'11]: Over big fields, Char ≠ Testability.
- [BGMSS'11]: Many questions/conjectures outlining a possible characterization of affineinvariant properties.



Invariance in Property Testing: Chicago

State of knowledge over big fields

- All known testable properties are S-O-C.
- If |K| = |Fⁿ|, then the class of degree d n-variate polynomials is (|F|^{d+1})- S-O-C over K.
- [Kaufman-Lovett] If $P \subseteq \{K \rightarrow F_p\}$ has only $|K|^t$ members, then P is k(t,p)-S-O-C.
- Sums, Intersections, and "Lifts" of S-O-C properties are S-O-C.

Quest in lower bound

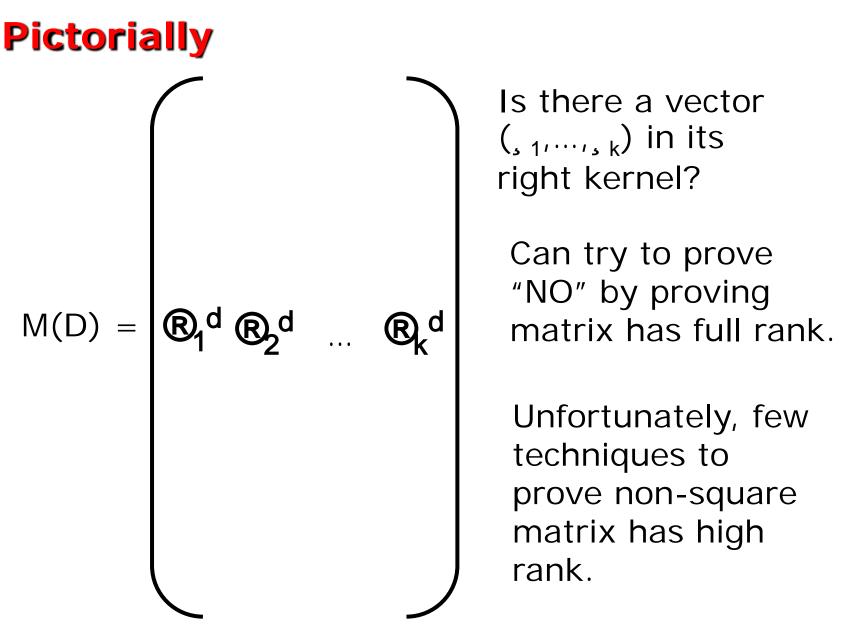
Proposition: For every affine-invariant property P, there exists a set of degrees D s.t.

P = {polynomials supported on monomials in D}

- Quest: Given degree set D (shadow-closed, shiftclosed) prove it has no S-O-C.
- Equivalently: Prove there are no
 λ₁ ... λ_k ∈ F, ⊛₁ ... ⊛_k ∈ K such that

 ∑_{i=1}^k λ_i ⊛_i^d = 0 for every d ∈ D.

 ∑_{i=1}^k λ_i ⊛_i^d ≠ 0 for every minimal d ∉ D.



October 18, 2011

Chicago: Testing Affine-Invariant Properties

Structure of Degree sets

- Let D = degree set (P).
- D Shift closed: Range = F_q and $d \in D \Rightarrow q.d \in D$.
- D Shadow closed: Let p = char(q) and d in D. Then every e in p-shadow of d is also in D.
 - e in p-shadow of d if every digit in base p expansion is smaller.

Non-testable Property - 1

- AKKLR (Alon, Kaufman, Krivelevich, Litsyn, Ron) Conjecture:
 - If a linear property is 2-transitive and has a klocal constraint then it is testable.
 - [GKS'08]: For every k, there exists affineinvariant property with 8-local constraint that is not k-locally testable.
 - Range = GF(2); Domain = GF(2ⁿ)
 - $P = Fam(Shift(\{0,1\} \cup \{1+2,1+2^2,...,1+2^k\})).$

Proof (based on [BMSS'11])

F = GF(2); K = GF(2ⁿ);

■ $P_k = Fam(Shift({0,1} [{1 + 2^i | i \in {1,...,k}}))$

If $Ker(M_i) = Ker(M_{i+1})$, then $Ker(M_{i+2}) = Ker(M_i)$

- Ker(M_{k+1}) = would accept all functions in P_{k+1}
- So Ker(M_i) must go down at each step, implying Rank(M_{i+1}) > Rank(M_i).

Stronger Counterexample

- GKS counterexample:
 - Takes AKKLR question too literally;
 - Of course, a non-locally-characterizable property can not be locally tested.
- Weaker conjecture:
 - Every k-locally characterized affine-invariant (2-transitive) property is locally testable.
 - Alas, not true: [BMSS]

[BMSS] CounterExample

- Recall:
 - Every known locally characterized property was locally testable
 - Every known locally testable property is S-O-C.
 - Need a locally characterized property which is (provably) not S-O-C.
 - Idea:
 - Start with sparse family P_i.
 - Lift it to get Q_i (still S-O-C).
 - Take intersection of superconstantly many such properties. $Q = \bigcap_i Q_i$

Example: Sums of S-O-C properties

- Suppose $D_1 = Deg(P_1)$ and $D_2 = Deg(P_2)$
- Then $Deg(P_1 + P_2) = D_1 \cup D_2$.
- Suppose S-O-C of P_1 is C_1 : $f(a_1) + ... + f(a_k) = 0$; and S-O-C of P_2 is C_2 : $f(b_1) + ... + f(b_k) = 0$.
- Then every g ∈ P₁ + P₂ satisfies:

 $\sum_{i,j} g(a_i b_j) = 0$

Doesn't yield S-O-C, but applied to random constraints in orbit(C₁), orbit(C₂) does!

• Proof uses wt(Deg(P_1)) $\leq k$.

Hopes

- Get a complete characterization of locally testable affine-invariant properties.
- Use codes of (polynomially large?) locality to build better LTCs/PCPs?
 - In particular move from "domain = vector space" to "domain = field".
- More broadly: Apply lens of invariance more broadly to property testing.

Thank You!

October 18, 2011

Invariance in Property Testing: Chicago

37 of 37