Invariance in Property Testing

Madhu Sudan Microsoft Research

July 29, 2011

Invariance in Property Testing: EPFL

1 of 38

This talk

- Introduce Property Testing
- Focus on special case of algebraic properties
 (Aka Locally Testing of (algebraic) Codes)
- Some general results for codes/properties with special invariance.

Modern challenge to Algorithm Design

Data = Massive; Computers = Tiny

- How can tiny computers analyze massive data?
- Only option: Design sublinear time algorithms.
 - Algorithms that take less time to analyze data, than it takes to read/write all the data.
 Can such algorithms exist?

Yes! Polling ...

Is the majority of the population Red/Blue
 Can find out by random sampling.
 Sample size
 margin of error

Independent of size of population

 Other similar examples: (can estimate other moments ...)

Recent "novel" example

Can test for homomorphisms:

- Given: f: G → H (G,H finite groups), is f essentially a homomorphism?
- Test:

Pick x,y in G uniformly, ind. at random;
Verify f(x) · f(y) = f(x · y)

- Completeness: accepts homomorphisms w.p. 1
 (Obvious)
- Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 Not obvious)

Brief History

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing
- [Goldreich,Goldwasser,Ron]
 - Graph property testing
- Since then ... many developments
 - Graph properties
 - Statistical properties

••••

More algebraic properties

July 29, 2011

Property Testing

- Data = a function from D to R:
 - Property $P \subseteq \{D \rightarrow R\}$

Distance

- $\delta(f,g) = \Pr_{x \in D} [f(x) \neq g(x)]$
- $\delta(f,P) = \min_{g \in P} [\delta(f,g)]$
- f is ε -close to g (f \approx_{ϵ} g) iff δ (f,g) $\leq \varepsilon$.
- Local testability:
 - P is (t, ε, δ)-locally testable if ∃ t-query test T
 f ∈ P ⇒ T^f accepts w.p. 1-ε.
 δ(f,P) > δ ⇒ T^f accepts w.p. ε.

• Notes: want $t(\varepsilon, \delta) = O(1)$ for $\varepsilon, \delta = \Omega(1)$.

Locally Testable Codes

Intriguing aspect of BLR test:

- Property P = {first order Reed-Muller codes} (A Hadamard Code)
- Motivates "Locally Testable Code" (LTC):
 - Property P = {Error-correcting code}
 - t-LTC: Testable with t(n) queries.
- Are there better rate LTCs than Hadamard?
 - Yes example 1: RM codes.
 - Yes ... many more sophisticated ones.
- Natural motivation: Can test massive DVD for "too many" errors

July 29, 2011

Why is BLR special?

July 29, 2011

Invariance in Property Testing: EPFL

9 of 38

Why is BLR special?

- Impressive collection of generalizations, alternate proofs, applications (all of PCP, LTC theory, e.g.)?
- Why is it more interesting than just polling?
- Why did the proof work? Was it a one-shot thing?
- Most previous attempts to extend "broadly" failed ...

BLR Analysis

■ Fix f s.t. Rej(f) = $Pr_{x,y} [f(x) + f(y) \neq f(x+y)] < \epsilon$

- Step 0: Show δ(f,g) small
- Step 1: $\forall x, Pr_{y,z}$ [Vote_x(y) \neq Vote_x(z)] small.

Step 2: Use above to show g is well-defined and a homomorphism.

July 29, 2011

Key Step: Step 1

• Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

(Note: Prob over y,z for fixed x.)

Proof: f(x+y) + f(z) = f(x+y+z) [w.h.p.] = f(x+z) + f(y) [w.h.p. again]

Proof from the Book.

Indisputable! Inexplicable!)

July 29, 2011

Extensions

- [Rubinfeld + S. 92-96]: Low degree tests
- [Rubinfeld 94]: Functional equations
- [ALMSS, etc.]: PCP theory
- [AKKLR 02]: Reed-Muller tests
- [KaufmanRon, JPRZ]: Generalized RM tests.

... each time a new proof of key step.

Abstraction of BLR (in special case)

Restrict to G = Fⁿ and H = F

(F = finite field; with q elements)

- Property:
 - Linear: (sum of linear functions is linear)
 - Locally characterized: $\forall x, y f(x) + f(y) = f(x+y)$
 - Linear-invariant: Linear function remains linear after linear transformation of domain.
 - Single-orbit: Constraints above given by one constraint and implication of linear-invariance.
- Our hope: Such abstractions explain, extend and unify algebraic property testing.

Invariances

Property P invariant under permutation (function) π: D → D, if

 $f \in P \Rightarrow f \circ \pi \in P$

- Property P invariant under group G if $\forall \pi \in G$, P is invariant under π .
- Can ask: Does invariance of P w.r.t. "nice" G leads to local testability?

July 29, 2011

Invariances are the key?

- Polling["] works well when (because) invariant group of property is the full symmetric group.
- Modern property tests work with much smaller group of invariances.
- Graph property ~ Invariant under vertex renaming.
- Algebraic Properties & Invariances?

July 29, 2011

Example motivating symmetry

- Conjecture (AKKLR '96):
 - Suppose property P is a vector space over F₂;
 - Suppose its "invariant group" is "2-transitive".
 - Suppose P satisfies a t-ary constraint

■ $\forall f \in P, f(\alpha_1) + \cdots + f(\alpha_t) = 0.$ (dual(P) has distance $\leq t$)

- Then P is (q(t), €(t,δ),δ)-locally testable.
- Inspired by "low-degree" test over F₂. Implied all previous algebraic tests (at least in weak forms).

July 29, 2011

Affine-invariance & testability

Bertinoro: Testing Affine-Invariant Properties

Abstracting Algebraic Properties

- [Kaufman & S.]
- Range is a field F and P is F-linear.
- Domain is a vector space over F (or some field K extending F).
- Property is invariant under affine (sometimes only linear) transformations of domain.
- Property characterized by single constraint, and its orbit under affine (or linear) transformations."

July 29, 2011

Terminology

t-Constraint: Sequence of t elements of domain, and set of forbidden values for this sequence.

e.g. f(a) + f(b) = f(a+b)

t-characterization: Collection of t-constraints, satisfaction of which is necessary and sufficient criterion for satisfying property

e.g. f(a) + f(b) = f(a+b), f(c) + f(d) = f(c+d) ...

[t-LDPC]

t-single-orbit characterization: One k-constraint such that its translations under affine group yields k-characterization.

f(L(a)) + f(L(b)) = f(L(a+b)); a,b fixed, all linear L.

Affine-invariance & testability

Bertinoro: Testing Affine-Invariant Properties

Main Results

July 29, 2011

Invariance in Property Testing: EPFL

22 of 38

Some results

- If P is affine-invariant and has t-single orbit characterization then it is (t, δ/t³, δ)-locally testable.
 - Unifies previous algebraic tests (in basic form) with single proof.

Affine-invariance & testability

Bertinoro: Testing Affine-Invariant Properties

Analysis of Invariance-based test

• Property P given by $\alpha_1, \dots, \alpha_t$; $V \subseteq F^k$

■ P = {f | $(f(A(\alpha_1)), ..., f(A(\alpha_t))) \in V, \forall affine A:K^n \rightarrow K^n$ }

■ Rej(f) = Prob_A [(f(A(α_1)), ..., f(A(α_t))) ∉ V]

Wish to show: If Rej(f) < 1/t³, then δ(f,P) = O(Rej(f)).

July 29, 2011

BLR Analog

■ Rej(f) = $Pr_{x,y} [f(x) + f(y) \neq f(x+y)] < \epsilon$

Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).

Step 0: Show δ(f,g) small

■ Step 1: $\forall x, Pr_{y,z}$ [Vote_x(y) ≠ Vote_x(z)] small.

Step 2: Use above to show g is well-defined and a homomorphism.

July 29, 2011

Generalization

• $g(x) = \beta$ that maximizes, over A s.t. $A(\alpha_1) = x$, $Pr_A [(\beta, f(A(\alpha_2), ..., f(A(\alpha_t)))) \in V]$

Step 0: o(f,g) small.

■ Vote_x(A) = β s.t. (β , f(A(α_2))...f(A(α_t))) ∈ V (if such β exists)

Step 1 (key): ∀ x, whp Vote_x(A) = Vote_x(B).
 Step 2: Use above to show g ∈ P.

July 29, 2011

BLR Analysis of Step 1

• Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

July 29, 2011

Invariance in Property Testing: EPFL

28 of 38

July 29, 2011

Results (contd.)

- Thm 2: If P is affine-invariant over K and has a single t-local constraint, then it is has a q-single orbit feature (for some q = q(K,t))
- Proof ingredients:
 - Analysis of all affine invariant properties.
 - Characterization of all affine invariant properties in terms of degrees of monomials in support of polynomials in family
 - Rough characterization of locality of constraints, in terms of degrees.
- Infinitely many (new) properties ...

Results from [KS '08]

- Thm 1: If P is affine-invariant and has t-single orbit feature then it is (t, δ/t³, δ)-locally testable.
 Unifies previous algebraic tests with single
 - In onlines previous algebraic tests with single proof.
- Thm 2: If P is affine-invariant over K and has a single t-local constraint, then it is has a q-single orbit feature (for some q = q(K,t))

(explains the AKKLR optimism)

Completely characterizes local testability of affine-invariant properties over vector spaces over small fields.

Vector spaces over big fields?

- Most general case:
 - $f: K \to F^m$
 - Most interesting cases
 - K = huge field; F, m small.

Reasons to study:

Broader class: Potential counterexamples to intuitive beliefs.

Include starting point for all LTCs (so far).

Subsequent results

- GrigorescuKaufmanS'08]: 1st Counterexample to AKKLR Conjecture (t-local constraint ≠ t-LDPC.)
- [GrigorescuKaufmanS.'09]: Single orbit characterization of some BCH (and other) codes.
- [Ben-SassonS.'11]: Limitations on rate of (O(1)locally testable) affine-invariant codes.
- [Ben-SassonMaatoukShpilkaS.'11]: 2nd counterexample to AKKLR (t-LDPC ≠ t-testable)
- [above+Grigorescu'11]: Sums of SOC are SOC.
- [KaufmanWigderson]: LDPC codes with invariance (not affine-invariant)
- [Bhattacharyya et al.]: Affine-invariant non-linear July 29, 2011 Invariance in Property Testing: EPFL 33 of 38

Technical nature of questions

Given: t points α₁, ..., α_t from K;
 and set of positive integers D,

When is the t x |D| generalized Vandermonde matrix with columns indexed by [t] and rows by D, with (i,d)th entry being α_i^d , of full column rank?

Nice connections to symmetric polynomials, and we have new results (we think).

July 29, 2011

Other Invariances

- [KaufmanWigderson]: LDPC codes with invariance (not affine-invariant; probably not LTC).
- [Bhattacharyya et al. '09...'11]: Linear-invariant non-linear properties.

Broad directions to consider

- What groups of invariances lead to testability?
- Is there a subclass of affine-invariant codes that will lead to linear-rate LTCs? (n^{o(1)}-locally testable with linear rate?)
 - General program):
 - To understand structure.
 - To understand locality vs. structure.
 - To get new performance parameters.
- In general ... seek invariances

July 29, 2011

Thanks

July 29, 2011

Invariance in Property Testing: EPFL

38 of 38