Physical Limits of Communication

Madhu Sudan Microsoft Research

Joint work with **Sanjeev Khanna** (**U. Penn.**)

Reliable Communication

- Communication is Reliable $\Leftrightarrow D(Y) = m$.
- Can be communication across space (e.g. cellphones) or time (DVD).
- Implicit axiom:
 - If Sender/Receiver are physically separated, then only finite # bits can be communicated in finite amount of time. (|S| is finite.)
- This talk: Why?

Why should computer science care?

Axioms of computation: Computation is local.

- Works with finite state
- Operates on/based on finite number of (preselected) bits at a time.
- Preselection changes locally from step to step.
- Rely on communication axiom implicitly:
 - Why is state finite?
 - Why finite number of bits at a time?
 - If communication were different, computation should/would be too!

Why is finiteness restrictive?

Physical channels are not a priori discrete.
 Input to channel/Output of channel = signal.

Part I: Classical Models

Continuous-valued functions [Shannon]

- Say signals are discrete-time, continuous-valued: $f: \{0,1,...,T\} \rightarrow [0,1]$
- Channel = ?
 - Error η : {0,1, ..., T} \rightarrow [$-\epsilon$, $+\epsilon$]
 - Output signal $Y: \{0, 1, ..., T\} \rightarrow \Re$ $Y(t) = f(t) + \eta(t)$
- Capacity := log |S| = finite? Infinite?
 - Analysis (two cases):
 Adversarial error: Easy.
 ∀t, adversary can fix Y(t) to be multiple of ε.
 Capacity ≤ T log (1/ε)

Continuous-valued functions (contd.)

- Recall
 - Input: $f: \{0, 1, ..., T\} \rightarrow [0, 1]$
 - Error η : {0,1, ..., T} \rightarrow [$-\epsilon$, $+\epsilon$]
 - Output signal $Y: \{0, 1, ..., T\} \rightarrow \Re$, $Y(t) = f(t) + \eta(t)$
- Probabilistic error: $\eta(t) \leftarrow N(0, \epsilon^2)$ ind., $\forall t$.
- Spirit of Shannon's analysis:
 - Capacity of channel without noise = ∞
 - Entropy of noise = ∞
 - Capacity of noisy channel

= cap of channel w/o noise - entropy of noise

$$= \infty - \infty = O\left(T\log\frac{1}{\epsilon}\right).$$

Continuous-time [SP: Nyquist et al.]

- Signals (input/output): f: [0, T] → [0,1]
 Methodology quite different:
- Well-studied in classical Signal Processing (SP):
 - Works of [Nyquist, Shannon, Landau-Pollak-Slepian]
- Many Variations:
 - Layperson version
 - Frequency spectrum of signal $\subseteq [-W, +W]$ ⇒ suffices to sample signal O(T/W) times.
 - Correct versions:
 - More complex (theorems + models).

Continuous-time (contd.)

- Actual versions:
 - Shannon:
 - Frequency spectrum finite subset of [-W,+W] ⇒ suffices to sample finitely many times. (V. weak).
 - Nyquist:
 - Frequency spectrum $\subseteq [-W, +W]$

 $\Rightarrow \text{ signal f reconstructible from } \left\{ f\left(\frac{i}{2W}\right) \right\}_{\{i \in \mathbb{Z}\}}$

 Infinite many samples! Finite version can't work (with exact reconstruction).

(My) Problems with SP axioms

Why do we need Fourier transforms?

- What are these operations in time domain?
- (Fourier analysis should remain analysis technique not natural operation).
- Not clean (like Shannon for discrete-time).
- Frequency vs. time:
 - Only signal bounded in time and frequency spectrum is the zero signal
 - So we need to relax even bandwidth restrictions (some variations studied).
 - Impulse-response of low-pass filter is non-causal!
 - Are variations causal?

Part II: Our Model: Delays

Noisy and Tardy Channels

- Input: $f: [0,T] \rightarrow [0,1]$
- Noise: $\eta: [0, T] \to \Re$ (typically small $\approx \pm \epsilon$)
- Delay: $\Delta: [0, T] \rightarrow \Re^{\{\geq 0\}}$ (typically ≈ 1).
- Output: $Z: [0, T] \rightarrow \Re$ where

 $\square \mathbf{Z}(t) = \int_0^t \mathbf{1}\{\tau + \Delta(\tau) = t\} \cdot \big(f(\tau) + \eta(\tau)\big).$

- Noise + Delay:
 - Probabilistic or Adversarial ?
 - If one is adversarial, does it know the other?

Motivations for delay

- Channels seem to do some frequency "attenuation"/"smoothing".
- Such attenuation should be expressible in time domain (impulse response).
- Impulse response should be causal.
- Under simplifying assumptions (response is nonnegative) impulse response looks like pdf of delay.
 - (Making delay probabilistic necessary to introduce some uncertainty. If not, easy to invert distortion.)

Discrete Modelling of Continuous time

- To simplify our analysis, will discretize time (and signal value), but will allow encoder/decoder to choose how fine the discretization is.
- So 1 unit of time = M micro-intervals (each microinterval is of length 1/M).
- Signal value ∈ {0,1}; and constant within microinterval.

• Will ask: Does $\frac{capacity(M)}{T} \to \infty$ as $M \to \infty$?

Notationally:

• Let
$$N = M \cdot T$$
.

• Encoding =
$$X_1, X_2, ..., X_N \in \{0, 1\}$$

• Error =
$$\eta_1, \eta_2, ..., \eta_N \in \{0, 1\};$$

 $\eta_i = 1 \approx$ for ϵ -fraction of *i*'s.

• Delay =
$$\Delta_1, \Delta_2, ..., \Delta_N; \Delta_i \approx M$$
.

• Output =
$$Z_1, Z_2, ..., Z_N \in \mathbb{Z}^{\geq 0}$$
;

$$Z_i = \sum_{\{j \leq i: j + \Delta_j = i\}} (X_j \bigoplus \Delta_j)$$

• Will be interested in: Capacity(M) $\triangleq \frac{1}{T} \cdot \log |S|$

Questions:

• Will be interested in: Capacity(M) $\triangleq \frac{1}{T} \cdot \log |S|$

• **Does** Capacity(M) $\rightarrow \infty$?

- Might depend on whether Noise/Delay are adversarial/probabilistic.
 - Furthermore, if only one is adversarial, is it adaptive wrt randomness of the other?
- Probabilistic Models:
 - Noise: η_i Bernoulli r.v. 1 w.p. ϵ and 0 o.w.
 - Delay: Δ_i Geometric r.v. with mean M.
 (So unit time delay.)

Answers:

- Adv. Noise + Adv. Delay: Capacity is finite.
- Random Noise + Random Delays: Capacity unbounded.
- Final theorem (a classification):
 - $\exists \epsilon > 0 \text{ s.t. } \lim_{\{M \to \infty\}} \{Capacity(M)\} = \infty \text{ for random} \\ delay with adversarial/random noise of rate <math>\epsilon$, provided noise independent of delay.

• Otherwise, $\lim_{\{M\to\infty\}} \{Capacity(M)\} < \infty, \forall \epsilon > 0.$

Part III: Some Proofs

Adversarial Noise and Delay

General view of delays:

- Think of "delay" as a queue/buffer.
 Incoming bits (X_i + η_i) held in this buffer and released at time i + Δ_i.
- Analysis of Adversarial channel:
 - Adversary can force channel to look discrete:
 - Bits depart the queue at integral time units $(i + \Delta_i \text{ is a multiple of } M)$.
 - Number of ones departing buffers are always integral mutiples of $\epsilon \cdot M$.

Random Noise and Delay

 Basic idea: Repeating bits M^{1-δ} times gives enough "signal" to overwhelm √M deviation due to delay/noise (especially if buffer is balanced).

• Encoder: $0 \rightarrow 0^{L}1^{L}$; $1 \rightarrow 1^{L}0^{L}$; $L \approx M^{\binom{4}{5}}$ 0-block

- Differential Decoding:
 - Compare fraction of 1's in middle of block to end.
 - report 0 iff increase.

Random Noise and Delay (contd.)

0-block

- Differential Decoding:
 - Compare fraction of 1's in middle of block to end.
 - report 0 iff increase.
- Analysis: Chernoff bounds.
- Same works if noise is adv. but ind. of delay.

Other Finite Cases:

Random Delay | Adversarial Noise:

- Adv. groups signal into blocks of length $\approx \epsilon M$
- At end of each block, round buffer contents to multiple of *eM*.
- Also zeroes out all bits that arrive & depart within same block.
- Analysis:
 - Output process "distributionally defined" by contents of buffer at end of blocks.
 - Uses: "Geometric distribution is memoryless."

Other Finite Cases – II

Adv. Delay | Random Noise

- Divide input into blocks;
- Delay enough (of the right) bits to make sure buffer contents at end of blocks are multiples of *\epsilon M* (before noise).
- Analysis:
 - Prove that output signal is "distributionally determined" by buffer contents at end of blocks.
 - Involves analysis of "signal via noise" channel.

Part IV: Conclusions

Physical Limits of Communication = ?

- Most reasonable interpretation of nature: nonadversarial.
 - In such settings capacity = infinite!
 - Counterintuitive + Contrary to SP literature.
- Did we model physics correctly?: Not sure ...
- Other possible explanations:
 - Universe is finite ... (was this implicit in Shannon?)
 - Precise measurements are expensive (but wasn't this taken care of?)
 - Some non-linearity?
 - No natural explanations in time domain!

Thank You!