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Prelude

• Algorithmic Problems in Coding Theory

• New Paradigm in Algorithms

• The Marriage: Local Error-Detection & Correction
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Algorithmic Problems in Coding Theory
 Code: Σ = finite alphabet (e.g., {0,1}, {A … Z})

 E:Σk → Σn; Image(E) = C µ Σn

 R(C) = k/n; δ(C) = normalized Hamming distance
 Encoding: 

 Fix code C and associated E.
 Given m 2 Σk, compute E(m).

 Error-detection (є-Testing):
 Given x 2 Σn, decide if 9 m s.t. x = E(m).
 Given x, decide if 9m s.t. δ(x,E(m)) ≤ є .

 Error-correction (Decoding):
 Given x 2 Σn, compute (all) m s.t. 

δ(x,E(m)) ≤ є (if any exist).



 Answer 2: YES, if we are willing to 
1. Present input implicitly (by an oracle). 
2. Represent output implicitly
3. Compute  function on approximation to input.

Extends to computing relations as well.
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Sublinear time algorithmics

 Given f:{0,1}k → {0,1}n can f be “computed” in 
o(k,n) time?

 Answer 1: Clearly NO, since that is the time it 
takes to even read the input/write the output

fx f(x)x-oracle
j

xj

i

f(x)if(x’)i

where x’ ¼ x
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Sub-linear time algorithms

 Initiated in late eighties in context of
 Program checking [BlumKannan,BlumLubyRubinfeld]
 Interactive Proofs/PCPs [BabaiFortnowLund]

 Now successful in many more contexts
 Property testing/Graph-theoretic algorithms
 Sorting/Searching
 Statistics/Entropy computations
 (High-dim.) Computational geometry 

 Many initial results are coding-theoretic!
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Sub-linear time algorithms & Coding

 Encoding: Not reasonable to expect in sub-linear 
time.

 Testing? Decoding? – Can be done in sublinear 
time.
 In fact many initial results do so!

 Codes that admit efficient …
 … testing: Locally Testable Codes (LTCs)
 … decoding: Locally Decodable Codes (LDCs).
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Rest of this talk

 Definitions of LDCs and LTCs
 Quick description of known results
 The first result: Hadamard codes
 Some basic constructions
 Recent constructions of LDCs.

 [Kopparty-Saraf-Yekhanin ‘11]
 [Yekhanin ‘07,Raghavendra ‘08,Efremenko ‘09]
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Definitions
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Locally Decodable Code

n

w

C:Σk→Σn is (q,є)-Locally Decodable if 9 decoder D 
s.t. given i 2 [k], and oracle w : [n] → Σ 

s.t. 9 m s.t. δ(w,C(m)) ≤ є ≤ δ(C)/2,     
D(i) outputs mi

D(i) reads q(n) random positions of w
and outputs mi w.p. ≥ 2/3.

What if є> δ(C)/2? Might need
to report a list of codewords.
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Locally List-Decodable Code

n

w

C is (є,L)-list-decodable if 8 w 2 Σn

# codewords c 2 C s.t. δ(w,c) ≤ є is at most L.

C is (q,є,L)-locally-list-decodable if 9 decoder D s.t. 
given oracle w: [n] \to Σ, 
8 m \in Σk, s.t. δ(w,C(m)) ≤ є, 9 j 2 [L] s.t., 

8 i \in [k], Dw(i,j) output mi w.p. 2/3.

D(i,j) reads q(n) random positions of w
and outputs mi w.p. ≥ 2/3.
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History of definitions

 Constructions predate formal definitions
 [Goldreich-Levin ’89].
 [Beaver-Feigenbaum ’90, Lipton ’91].
 [Blum-Luby-Rubinfeld ’90].

 Hints at definition (in particular, interpretation in 
the context of error-correcting codes): [Babai-
Fortnow-Levin-Szegedy ’91].

 Formal definitions
 [S.-Trevisan-Vadhan ’99] (local list-decoding).
 [Katz-Trevisan ’00] 
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Locally Testable Codes

n

w

“Weak” definition: hinted at in [BFLS], explicit in 
[RS’96, Arora’94, Spielman’94, FS’95].

C is (q,є)-Locally Testable if ∃ tester T s.t. 

T reads q(n) positions (probabilistically):
If w 2 C, T accepts w.p. 1.
If δ(w,C) > є, T rejects w.p. ≥ ½.
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Strong Locally Testable Codes

n

w

“Strong” Definition: [Goldreich-S. ’02]

C is (q,є)-(strongly) Locally Testable if ∃ tester T s.t. 

T reads q(n) positions (probabilistically):
If w 2 C, T accepts w.p. 1.
8 w 2 Σn, T rejects w.p. ≥ Ω(δ(w,C)).
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Motivations
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Local Decoding: Worst-case vs. Average-case

 Suppose C µ ΣN is locally-decodable for N = 2n. 
(Furthermore assume can locally decode all bits 
of the codeword, and not just message bits.)

 c 2 C can be viewed as c: {0,1}n → Σ.
 Local decoding ~) can compute c(x), 8 x, if can 

compute c(x’) for most x’.
 Relates average case  complexity to worst-case 

complexity. [Lipton, STV].
 Alternate interpretation: 

 Can compute c(x) without revealing x. 
 Leads to Instance Hiding Schemes [BF], 

Private Information Retrieval [CGKS].
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Motivation for Local-testing

 No generic applications known.
 However, 

 Interesting phenomenon on its own.
 Intangible connection to Probabilistically 

Checkable Proofs (PCPs).
 Potentially good approach to understanding 

limitations of PCPs (though all resulting work 
has led to improvements).
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Contrast between decoding and testing

 Decoding: Property of words near codewords.
 Testing: Property of words far from code.

 Decoding:
 Motivations happy with n = quasi-poly(k), and 

q = poly log n. 
 Lower bounds show q = O(1) and n = nearly-

linear(k) impossible.
 Testing: Better tradeoffs possible! Likely more 

useful in practice.
 Even conceivable: n = O(k) with q = O(1)?
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Some LDCs and LTCs
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Hadamard (1st Order RM) Codes

 Messages:
 (Coefficients of) Linear functions {L :F2 k → F2}.

 Encoding:
 Evaluations of L on all of F2

k.
 Parameters:

 k bit messages → 2k bit codewords.
 Locality:

 2-Locally Decodable [Folklore/Exercise]
 3-Locally Testable [BlumLubyRubinfeld]
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Hadamard (1st Order RM) Codes

 Summary:

 There exist infinite families of codes

 With constant locality (for testing and 
correcting).
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Codes via Multivariate Polynomials

 Message: Coefficients of degree t, m-variate
polynomial over (finite field) F 

((generalized) Reed-Muller Code)

 Encoding: Evaluations of P over all of Fm

 Parameters: k ¼ (t/m)m; n = Fm ; δ(C) ¼ 1 - t/F.

PF

Fm
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Basic insight to locality

 m-variate polynomial of degree t, restricted to 
m’ < m dim. affine subspace is poly of deg. t.

 Local Decoding:
 Given oracle for w ¼ P, and x 2 Fm

 Pick subspace A through x.
 Query w on A and decode for P|A

 Query complexity: q = Fm’ ; Time = poly(q); 
m’ = o(m) ) sublinear!

 Local Testing:
 Verify w restricted to subspace is of degree t.
 Same complexity; Analysis much harder.
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Polynomial Codes

 Many parameters: m, t, F

 Many tradeoffs possible: 
 Locality (log k)2 with n = k4 ; 
 Locality є.k with n = O(k);
 Locality (constant) q, with n = exp(k(1/q-1))
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Are Polynomial Codes (Roughly) Best?

 No! [Ambainis97] [GoldreichS.00] …

 No!! [Beimel,Ishai,Kushilevitz,Raymond]

 Really … Seriously … No!!!!
[Yekhanin07,Raghavendra08,Efremenko09]
[Kopparty-Saraf-Yekhanin ‘10]
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Recent LDCs - I
[Kopparty-Saraf-Yekhanin ‘10] s          



The Concern

 Poor rate of polynomial codes:
 Best rate (for any non-trivial locality): ½

(bivariate polynomials, √n locality).

 Locality nє : Rate є(1/ є)

(use 1/є variables).

 Practical codes use high rates (say 80%)
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Bivariate Polynomials

 Use t = (1 - ρ).F ; ρ → 0
 Yields δ(C) ¼ ρ.
 # coefficients: k < ½.(1- ρ)2.F2

 Encoding length: n = F2.
 Rate ¼ ½.(1 - ρ)2

 Can’t use degree > F; Hence Rate < ½ !
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Mutliplicity Codes

 Idea: 
 Encode polynomial P(x,y) by its evaluations, 

and evaluations of its (partial) derivatives!
 Sample parameters:

 n = 3F2 (F2 evaluations of {P + Px + Py}).
 However, degree can now be larger than F.
 t = 2.(1 - ρ).F ) δ(C) = ρ. 
 k = 2 . (1 - ρ) 2 . F2 ; Rate ¼ 2/3.
 Locality = O(F) = O(√k)

 Getting better:
 With more multipicity, rate goes up.
 With more variables, locality goes down.
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Multiplicity Codes: The Theorem

 Theorem:
8 ®,¯ > 0, 
9 δ > 0 and LDC C: {0,1}k → {0,1}n with

Rate ≥ 1 - ®, 
Distance ≥ δ,
Locality ≤ k¯ (decodable with k¯ queries). 
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Recent LDCs - II
[Yekhanin ‘07, Raghavendra ‘08, Efremenko ‘09]



Other end of spectrum

 Minimum locality possible?
 q = 2: Hadamard codes achieve n = 2k;

 [Kerenedis, deWolf]: n ≥ exp(k).

 q = 3: Best possible = ?.
 Till 2006: Widely held belief: n ≥ exp(k.1)
 [Yekhanin ‘07]: n · exp(k.0000001)
 [Raghavendra ‘08]: Clarified above.
 [Efremenko ‘09]: n · exp(exp(√(log k))) …
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Essence of the idea:

 Build “good” combinatorial matrix over Zm

(integers modulo m).

 Embed  Zm in multiplicative subgroup of F.

 Get locally decodable code over F.
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“Good” Combinatorial matrix

0  …
… 0  …
… 0 …
… 0 …
… 0

arbitrary

• Columns closed under addition

A =

• k x n matrix over Zm

• Zeroes on diagonal

• Non-zero off-diagonal



Embedding into a field

 Let  A = [aij] be good over Zm .

 Let ! 2 F be primitive mth root of unity.

 Let G = [ ! aij ].

 Thm [Y, R, E]:
G generates an m query LDC over F !!!

Highly non-intuitive!
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Improvements

 Let  A = [aij] be good; Let G = [ !aij ].
 Off-diagonal entries of A from S

) code is (|S|+1)-locally decodable.
(suffices for [Efremenko]).

 !S roots of t-sparse polynomial
) code is t-locally decodable.
(critical for [Yekhanin]). 
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“Good” Matrices?

 [Yekhanin]:
 Picked m prime. 
 Hand-constructed matrix. 
 Achieved n = exp(k(1/|S|))
 Optimal if m prime!
 Managed to make S large (106) with t=3.

 [Efremenko]
 m composite!
 Achieves |S| = 3 and n = exp(exp(√(log k)))     

([Beigel,Barrington,Rudich];[Grolmusz])
 Optimal?
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Limits to Local Decodability: Katz-Trevisan

 q queries ) n = k1 + Ω(1/q) 

 Technique:
 Recall D(x) computes C(x) whp for all x.
 Can assume (with some modifications) that 

query pattern uniform for any fixed x.
 Can find many random strings such that their 

query sets are disjoint.
 In such case, random subset of n1-1/q

coordinates of codeword contain at least one 
query set, for most x. 

 Yields desired bound.
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Some general results

 Sparse, High-Distance Codes: 
 Are Locally Decodable and Testable

 [KaufmanLitsyn, KaufmanS]

 2-transitive codes of small dual-distance:
 Are Locally Decodable

 [Alon,Kaufman,Krivelevich,Litsyn,Ron]

 Linear-invariant codes of small dual-distance:
 Are also Locally Testable

 [KaufmanS]
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Summary

 Local algorithms in error-detection/correction 
lead to interesting new questions.

 Non-trivial progress so far.

 Limits largely unknown
 O(1)-query LDCs must have Rate(C) = 0 

 [Katz-Trevisan]
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Questions

 Can LTC replace RS (on your hard disks)?
 Lower bounds?
 Better error models?

 Simple/General near optimal constructions?
 Other applications to mathematics/computation? 

(PCPs necessary/sufficient)?
 Lower bounds for LDCs?/Better constructions?
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Thank You!
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