Local Algorithms & Error-correction

Madhu Sudan Microsoft Research

July 25, 2011

Local Error-Correction

Prelude

- Algorithmic Problems in Coding Theory
- New Paradigm in Algorithms
- The Marriage: Local Error-Detection & Correction

Algorithmic Problems in Coding Theory

Code: Σ = finite alphabet (e.g., {0,1}, {A ... Z})
 E:Σ^k → Σⁿ; Image(E) = C ⊆ Σⁿ

• $R(C) = k/n; \delta(C) = normalized Hamming distance$

Encoding:

- Fix code C and associated E.
- Given $m \in \Sigma^k$, compute E(m).

Error-detection (e-Testing):

• Given $x \in \Sigma^n$, decide if $\exists m s.t. x = E(m)$.

• Given x, decide if $\exists m \text{ s.t. } \delta(x, E(m)) \leq \epsilon$.

Error-correction (Decoding):

• Given $x \in \Sigma^n$, compute (all) m s.t.

 $\delta(x, E(m)) \leq \varepsilon$ (if any exist).

Sublinear time algorithmics

• Given f: $\{0,1\}^k \rightarrow \{0,1\}^n$ can f be "computed" in o(k,n) time?

- Answer 2: Clearly Measinvellthattis the time it takes to reven reach the imput/white the option
 - 2. Represent output implicitly

3. Compute function on approximation to input. Extends to computing relations as well.

July 25, 2011

Sub-linear time algorithms

Initiated in late eighties in context of

- Program checking [BlumKannan,BlumLubyRubinfeld]
- Interactive Proofs/PCPs [BabaiFortnowLund]
- Now successful in many more contexts
 - Property testing/Graph-theoretic algorithms
 - Sorting/Searching
 - Statistics/Entropy computations
 - High-dim.) Computational geometry
- Many initial results are coding-theoretic!

Sub-linear time algorithms & Coding

- Encoding: Not reasonable to expect in sub-linear time.
- Testing? Decoding? Can be done in sublinear time.
 - In fact many initial results do so!
- Codes that admit efficient ...
 - ... testing: Locally Testable Codes (LTCs)
 - ... decoding: Locally Decodable Codes (LDCs).

Rest of this talk

- Definitions of LDCs and LTCs
- Quick description of known results
- The first result: Hadamard codes
- Some basic constructions
- Recent constructions of LDCs.
 - [Kopparty-Saraf-Yekhanin '11]
 - [Yekhanin '07, Raghavendra '08, Efremenko '09]

Definitions

July 25, 2011

Locally Decodable Code

Locally List-Decodable Code

C is (ε, L) -<u>list-decodable</u> if $\forall w \in \Sigma^n$ # codewords $c \in C$ s.t. $\delta(w, c) \leq \varepsilon$ is at most L.

C is (q, ε, L) -locally-list-decodable if \exists decoder D s.t. given oracle w: [n] \to Σ , \forall m \in Σ^k , s.t. $\delta(w, C(m)) \leq \varepsilon$, $\exists j \in [L]$ s.t., \forall i \in [k], D^w(i,j) output m_i w.p. 2/3.

D(i,j) reads q(n) random positions of w and outputs $m_i w.p. \ge 2/3$.

History of definitions

Constructions predate formal definitions

- Goldreich-Levin '89].
- [Beaver-Feigenbaum '90, Lipton '91].
- [Blum-Luby-Rubinfeld '90].
- Hints at definition (in particular, interpretation in the context of error-correcting codes): [Babai-Fortnow-Levin-Szegedy '91].
- Formal definitions
 - [S.-Trevisan-Vadhan '99] (local list-decoding).
 - [Katz-Trevisan '00]

Locally Testable Codes

C is (q, ϵ) -Locally Testable if \exists tester T s.t.

"Weak" definition: hinted at in [BFLS], explicit in [RS'96, Arora'94, Spielman'94, FS'95].

July 25, 2011

Local Error-Correction

Strong Locally Testable Codes

C is (q, ϵ) -(strongly) Locally Testable if \exists tester T s.t.

"Strong" Definition: [Goldreich-S. '02]

July 25, 2011

Local Error-Correction

Motivations

July 25, 2011

Local Decoding: Worst-case vs. Average-case

- Suppose C ⊆ Σ^N is locally-decodable for N = 2ⁿ. (Furthermore assume can locally decode all bits of the codeword, and not just message bits.)
- $c \in C$ can be viewed as c: $\{0,1\}^n \rightarrow \Sigma$.
- Local decoding ~⇒ can compute c(x), ∀ x, if can compute c(x') for most x'.
- Relates average case complexity to worst-case complexity. [Lipton, STV].
- Alternate interpretation:
 - Can compute c(x) without revealing x.
 - Leads to Instance Hiding Schemes [BF], Private Information Retrieval [CGKS].

Motivation for Local-testing

- No generic applications known.
- However,
 - Interesting phenomenon on its own.
 - Intangible connection to Probabilistically Checkable Proofs (PCPs).
 - Potentially good approach to understanding limitations of PCPs (though all resulting work has led to improvements).

Contrast between decoding and testing

- Decoding: Property of words near codewords.
- Testing: Property of words far from code.

Decoding:

- Motivations happy with n = quasi-poly(k), and q = poly log n.
- Lower bounds show q = O(1) and n = nearlylinear(k) impossible.
- Testing: Better tradeoffs possible! Likely more useful in practice.

• Even conceivable: n = O(k) with q = O(1)?

Some LDCs and LTCs

July 25, 2011

Hadamard (1st Order RM) Codes

Messages:

• (Coefficients of) Linear functions $\{L : F_2 \land \to F_2\}$.

Encoding:

Evaluations of L on all of F₂^k.

Parameters:

• k bit messages $\rightarrow 2^k$ bit codewords.

Locality:

- 2-Locally Decodable [Folklore/Exercise]
- 3-Locally Testable [BlumLubyRubinfeld]

Hadamard (1st Order RM) Codes

Summary:

There exist infinite families of codes

With constant locality (for testing and correcting).

Codes via Multivariate Polynomials

 Message: Coefficients of degree t, m-variate polynomial over (finite field) F

((generalized) Reed-Muller Code)

Encoding: Evaluations of P over all of F^m
 Parameters: k ≈ (t/m)^m; n = F^m; δ(C) ≈ 1 - t/F.

Basic insight to locality

- m-variate polynomial of degree t, restricted to m' < m dim. affine subspace is poly of deg. t.
- Local Decoding:
 - Given oracle for $w \approx P$, and $x \in F^m$
 - Pick subspace A through x.
 - Query w on A and decode for P|_A
 - Query complexity: $q = F^{m'}$; Time = poly(q); m' = o(m) \Rightarrow sublinear!
- Local Testing:
 - Verify w restricted to subspace is of degree t.
 - Same complexity; Analysis much harder.

Polynomial Codes

Many parameters: m, t, F

Many tradeoffs possible:
Locality (log k)² with n = k⁴;
Locality e.k with n = O(k);
Locality (constant) q, with n = exp(k^(1/q-1))

Are Polynomial Codes (Roughly) Best?

No! [Ambainis97] [GoldreichS.00] ...

NO!! [Beimel, Ishai, Kushilevitz, Raymond]

Really ... Seriously ... NO....
 [Yekhanin07,Raghavendra08,Efremenko09]
 [Kopparty-Saraf-Yekhanin '10]

Recent LDCs - I [Kopparty-Saraf-Yekhanin '10] s

July 25, 2011

The Concern

Poor rate of polynomial codes:
 Best rate (for any non-trivial locality): ½ (bivariate polynomials, √n locality).

 Locality n^ε : Rate ε^(1/ε) (use 1/ε variables).

Practical codes use high rates (say 80%)

Bivariate Polynomials

- Use $t = (1 \rho) \cdot F$; $\rho \rightarrow 0$
- Yields $\delta(C) \approx \rho$.
- # coefficients: $k < \frac{1}{2} \cdot (1 \rho)^2 \cdot F^2$
- Encoding length: $n = F^2$.
- Rate $\approx \frac{1}{2}.(1 \rho)^2$

Can't use degree > F; Hence Rate < 1/2 !</p>

Mutliplicity Codes

Idea:

Encode polynomial P(x,y) by its evaluations, and evaluations of its (partial) derivatives!

Sample parameters:

- $n = 3F^2$ (F² evaluations of {P + P_x + P_y}).
- However, degree can now be larger than F.

•
$$t = 2.(1 - \rho).F \Rightarrow \delta(C) = \rho.$$

- k = 2 . (1 ρ) ² . F² ; Rate \approx 2/3.
- Locality = $O(F) = O(\sqrt{k})$
- Getting better:
 - With more multipicity, rate goes up.
 - With more variables, locality goes down.

Multiplicity Codes: The Theorem

• Theorem:

 $\begin{array}{l} \forall \ \alpha,\beta > 0, \\ \exists \ \delta > 0 \ \text{and} \ \text{LDC C:} \ \{0,1\}^k \rightarrow \{0,1\}^n \ \text{with} \\ \text{Rate} \ \geq \ 1 - \alpha, \\ \text{Distance} \ \geq \ \delta, \\ \text{Locality} \ \leq \ k^\beta \ (\text{decodable with} \ k^\beta \ \text{queries}). \end{array}$

Recent LDCs - 11 [Yekhanin '07, Raghavendra '08, Efremenko '09]

July 25, 2011

Other end of spectrum

Minimum locality possible?

q = 2: Hadamard codes achieve n = 2^k;
 [Kerenedis, deWolf]: n ≥ exp(k).

q = 3: Best possible = ?.
Till 2006: Widely held belief: n ≥ exp(k^{.1})
[Yekhanin '07]: n ≤ exp(k^{.0000001})
[Raghavendra '08]: Clarified above.
[Efremenko '09]: n < exp(exp(√(log k))) ...

Essence of the idea:

 Build "good" combinatorial matrix over Z_m (integers modulo m).

Embed Z_m in multiplicative subgroup of F.

Get locally decodable code over F.

"Good" Combinatorial matrix

- k x n matrix over Z_m
- Zeroes on diagonal

- Non-zero off-diagonal
- Columns closed under addition

July 25, 2011

Local Error-Correction

Embedding into a field

• Let $A = [a_{ij}]$ be good over Z_m .

• Let $\omega \in F$ be primitive mth root of unity.

• Let $G = [\omega^{a_{ij}}].$

Thm [Y, R, E]: G generates an m query LDC over F !!!

Highly non-intuitive!

July 25, 2011

Local Error-Correction

Improvements

Let A = [a_{ij}] be good; Let G = [ω^{aij}].
Off-diagonal entries of A from S

⇒ code is (|S|+1)-locally decodable.
(suffices for [Efremenko]).

ω^S roots of t-sparse polynomial

⇒ code is t-locally decodable.
(critical for [Yekhanin]).

"Good" Matrices?

[Yekhanin]:

- Picked m prime.
- Hand-constructed matrix.
- Achieved $n = \exp(k^{(1/|S|)})$
- Optimal if m prime!
- Managed to make S large (10⁶) with t=3.
- [Efremenko]
 - m composite!
 - Achieves |S| = 3 and n = exp(exp(√(log k))) ([Beigel,Barrington,Rudich];[Grolmusz])
 Optimal?

Limits to Local Decodability: Katz-Trevisan

- q queries \Rightarrow n = k¹ + $\Omega(1/q)$
- Technique:
 - Recall D(x) computes C(x) whp for all x.
 - Can assume (with some modifications) that query pattern uniform for any fixed x.
 - Can find many random strings such that their query sets are disjoint.
 - In such case, random subset of n^{1-1/q} coordinates of codeword contain at least one query set, for most x.
 - Yields desired bound.

Some general results

Sparse, High-Distance Codes:
 Are Locally Decodable and Testable
 [KaufmanLitsyn, KaufmanS]

2-transitive codes of small dual-distance:
 Are Locally Decodable
 [Alon,Kaufman,Krivelevich,Litsyn,Ron]

Linear-invariant codes of small dual-distance:
 Are also Locally Testable
 [KaufmanS]

July 25, 2011

Summary

- Local algorithms in error-detection/correction lead to interesting new questions.
- Non-trivial progress so far.
- Limits largely unknown
 O(1)-query LDCs must have Rate(C) = 0
 [Katz-Trevisan]

Questions

Can LTC replace RS (on your hard disks)?
Lower bounds?
Better error models?

Simple/General near optimal constructions?

- Other applications to mathematics/computation? (PCPs necessary/sufficient)?
- Lower bounds for LDCs?/Better constructions?

Thank You!

July 25, 2011