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Error-Correcting Codes 
 Used to store data over (noisy) storage 

media/communicate data over (noisy) channels. 
 Code (over alphabet Σ). 

 𝐸: Σ𝑘 → Σ𝑛;𝐶 = Image(𝐸); 
 Terminology:  

 Domain(𝐸) = messages; 𝐶 = codewords. 

 Rate(𝐶) = 𝑘
𝑛

. 

 Distance: For x, y ∈ Σ𝑛, 𝛿 𝑥,𝑦 = 1
𝑛

 𝑖   𝑥𝑖 ≠ 𝑦𝑖  | 

              𝛿 𝐶 = min
𝑢≠𝑣

{𝛿(𝐸 𝑢 ,𝐸 𝑣 } 

 Codes of interest: 𝑅 𝐶 , 𝛿 𝐶 > 0. 
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Algorithmic Problems in Coding Theory 

(Fix Code 𝐶 and encoding function 𝐸) 
 Encoding: 

 Given 𝑚 ∈ Σ𝑘, compute 𝐸(𝑚). 
 Error Detection/Testing: 

 Given 𝑤 ∈ Σ𝑛, determine if 𝑤 ∈ 𝐶. 
 Variations: Determine 𝛿 𝑤,𝐶 ≜ min

𝑥∈𝐶
 𝛿 𝑤, 𝑥  

(approximately). 
 Error Correction: 

 Given 𝑤 ∈ Σ𝑛 s.t. ∃ 𝑥 ∈ 𝐶 s.t. 𝛿 𝑤, 𝑥 ≤ 𝛿; 
compute 𝑥. 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 
 Answer 1: No 

 
 
 
 

f(x) 

Sublinear Algorithmics 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 
 Answer 1: No 
 Answer 2: Yes, provided: 

 Output represented implicitly 
 Input given as oracle 

 
 
 
 
 
 

f(x) 𝑓 𝑥 𝑖 

Sublinear Algorithmics 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 

 
 Answer 2: Yes, provided: 

 Output represented implicitly 
 Input given as oracle 
 Correctness guaranteed on approx. to input. 

 
 
 
 
 
 

𝑓 𝑥 𝑖 𝑓 𝑥� 𝑖 

Sublinear Algorithmics 
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Sub-linear time algorithms 

 Initiated in late eighties in context of 
 Program checking [BlumKannan,BlumLubyRubinfeld] 
 Interactive Proofs/PCPs [BabaiFortnowLund] 

 Now successful in many more contexts 
 Property testing/Graph-theoretic algorithms 
 Sorting/Searching 
 Statistics/Entropy computations 
 (High-dim.) Computational geometry  

 Many initial results are coding-theoretic! 
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Sub-linear time algorithms & Coding 

 Encoding: Not reasonable to expect in sub-linear 
time. 
 

 Testing? Decoding? – Can be done in sublinear 
time. 
 In fact many initial results do so! 

 
 Codes that admit efficient … 

 … testing: Locally Testable Codes (LTCs) 
 … decoding: Locally Decodable Codes (LDCs). 



of 33 July 25, 2011 Local Error-Correction 9 

Rest of this talk 

 Definitions of LDCs  
 Some background/Basic Construction 
 Recent constructions of LDCs. 

 [Kopparty-Saraf-Yekhanin ‘11] 
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Locally Decodable Code (LDC) 

 Code 𝐶 with encoder 𝐸 is ℓ,𝛿 -LDC if there exists 
a (sublinear-time) decoding algorithm 𝐷 on  
 Input: 𝑖 ∈ 𝑘  and Oracle for 𝑤: 𝑛 → Σ, s.t. 
∃𝑚 ∈ Σ𝑘 s.t. 𝛿 𝑤,𝐸(𝑚) ≤ 𝛿, 

 Outputs: 𝑚𝑖 w.p. at least 2/3 
 Locality: makes only ℓ queries to 𝑤. 

 History:  
 Some implied LDCs from 1950s [Reed,Muller]. 
 Construction + Implied definitions 

[Babai,Fortnow,Lund,Szegedy’90]. 
 Explicit definitions [S.,Trevisan,Vadhan; Katz-

Trevisan] 
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Motivations 
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Motivations to study LTCs 

 Intimately related to concept of Probabilistically 
Checkable Proofs (PCPs):  
 Format for writing mathematical proofs that 

can be checked by few local probes. 
 (Key ingredient in many hardness of 

approximation results.) 
 Current state of art: 

 State of the art PCP/LTCs [BenSassonS,Dinur] 
 Parameters: 𝑘 bits to 𝑘 ⋅ poly log𝑘 bits. 
 Locality: O(1) queries. 
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Motivations to study LDCs 

 Hard-core predicates: Hard Boolean functions 
from general hard functions. 

 Hardness amplification: Functions that are hard 
to compute on random inputs, from worst-case 
hard functions. 

 Private Information Retrieval: Distributed 
information storage method which allows user to 
query information privately. 
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Why the negativity? 

 Why are local codes leading only to negative 
results? (inapprox, hard predicates, hard-on-
average functions, privacy schemes …) 

 What about the obvious positive possibility: on 
storage devices etc.? 
 Rate is too weak: 

 best known with sublinear decoding 
 Rate .5 for locality 𝑛 

 Rate 𝜖
1
𝜖   for locality 𝑛𝜖. 

 Provable lower bounds: 𝑛 1+1ℓ   [KatzTrevisan] 
 Practical settings: Rate .8, .9 etc. 
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Basic Constructions 
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Self-correctible codes 

 Will ask for (slightly?) stronger object: 
 Every letter of codeword locally recoverable. 

 (as opposed to message) 
 

 Why? 
 Simpler concept (depends only on code, not 

encoding function). 
 Implies existence of encoding function that 

leads to LDC. 
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Codes from Multivariate Polynomials. 

 Parameters: 𝐹𝑞 ,𝑚,𝑑  
 Message space: 𝑚-variate polynomials of degree 

at most 𝑑 over 𝐹𝑞 

 Encoding: Evaluations over 𝐹𝑞
𝑚 

 Resulting code parameters: 𝑛
𝑘  

 𝑛 = 𝑞𝑚  
 𝑘 =  𝑚+𝑑

𝑑   

 Distance ≥ 1 − 𝑑
𝑞

 (Can also use 𝑑 > 𝑞, with care) 
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Local decoding/Self-correction 
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• Codeword = Function 𝑃 on cube. 

• Rec’d word = Function 𝑓 on cube 
                  = 𝑃 with errors  

• Correction problem: Recover  
       codeword at point  

• Self-correction alg: 
• Look at 𝑓 on line 
• Recover 𝑃 on line (classical  
                             decoding)   

• Locality = 𝑞 = 𝑛1/𝑚 

𝐹𝑞
𝑚 
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Sample Parameters 

 Best locality: 
 𝑑 = 1, 𝑚 = 𝑘, 𝑞 =  2: 

 𝑛 = 2𝑘;  2-locally decodable code 
(“Hadamard code”) for ¼-fraction errors. 

 Weakest (sublinear) locality: 

 𝑚 = 2,  𝑞 = 𝑑
1 −2𝛿

      

 𝑘 = 𝑑+2
2 ≈ 𝑑2

2
 ; 𝑛 = 𝑞2 ≈ 2𝑘

1−2𝛿 2 ; 

 Locality = 𝑛 , correcting 𝛿 fraction errors 

 In general: locality 𝑛𝜖 at rate 𝜖
1
𝜖 with 𝑚 = 1/𝜖 
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The Rate < ½ barrier 

 To get Ω(1) distance, need 𝑑 <  𝑞. 
 To get non-trivial locality: 𝑚 ≥ 2. 
 Implies 𝑘 <  𝑞+2

2 ≈ 𝑞2/2, and 𝑛 = 𝑞^2. 
 Rate at most ½.  
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The new breakthrough 

 Multiplicity Codes [KSY ‘11] 
 Theorem: 

 For every 𝛼,𝛽 > 0,  ∃ 𝛿 > 0 s.t. ∀ 𝑛  
     there exist codes 𝐶𝑛  with 

 Rate 𝐶𝑛 ≥ 1 − 𝛼 
 𝐶𝑛 is 𝑛𝛽-locally-decodable from 𝛿 errors. 

 Rate arbitrarily close to 1  
 (not expected – at least not by me).  

 Locality arbitrarily small power of 𝑛.  
 Even concrete parameters are interesting. 
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Multiplicity Codes 
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Basic Idea: 

 Extend Multivariate Polynomial codes: 
 Encoding also includes evaluations of “partial 

derivatives”. 
 Cons: Now encoding is even more redundant, 

so we lose rate? 
 Pros: But we can use higher degrees. 

 E.g.: Fraction of points where are all zero is 
at most deg (𝑓)/2𝑞. 

 (𝑓𝑥 denotes “partial derivative” wrt 𝑥) 
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Hasse derivatives & Multiplicities 

 For every 𝑖 = 𝑖1, … , 𝑖𝑚 , there exists a notion of 
𝑖 th partial derivative of 𝑃 𝑥1, … , 𝑥𝑚 , denoted 𝑃(𝑖) 

 Order of 𝑖 = 𝑖1, … , 𝑖𝑚  is ∑ 𝑖𝑗𝑗  
 Mult 𝑃, 𝑎1, … ,𝑎𝑚 ≜ largest 𝑠 s.t. all derivatives of 
𝑃 of order <  𝑠 vanish at (𝑎1, … ,𝑎𝑚) 

 Multiplicity Schwartz-Zippel Lemma:  

                        Ε𝑎1,…,𝑎𝑚  Mult 𝑃, 𝑎1, … ,𝑎𝑚 ≤ deg 𝑃
𝑞
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Multiplicity Codes Example-1 

 Parameters: 𝑚 = 2, 𝑑 = 1 − 2𝛿 𝑞, 𝑠 = 2. 
 Alphabet = (𝐹𝑞)^3 
 Message = 𝑚-variate polynomials of degree d 

over 𝐹𝑞 

 Encoding(𝑃)  =  𝑃 𝑎, 𝑏 ,𝑃𝑥 𝑎, 𝑏 ,𝑃𝑦 𝑎, 𝑏
(𝑎,𝑏)

 

 Code parameters: 𝑛 = 𝑞2 ; 𝑘 ≈ 1
3
⋅ 𝑑

2

2
 ; 

 Rate 𝐶 ≈ 2
3

 as 𝛿 → 0 ;  
 Locality = ? 

 If so, sublinear locality at rate > 1
2
 ! 
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Locality – I (no errors) 

 Reconstructing 𝑃(𝑎, 𝑏) from 𝑓 =  𝑃. 
 Idea: Still decode along lines. 
 Pick line ℓ thru 𝑎, 𝑏 ∶ ℓ =  𝛼𝛼 +  𝑎,𝛽𝛽 +  𝑏 𝑡 . 
 Define 𝑔 𝑡 = 𝑃 𝛼𝛼 + 𝑎,𝛽𝛽 + 𝑏 .  
 deg 𝑔 ≤ 𝑑;  
 have correct value of 𝑔 𝑡 ,∀𝑡 ∈ 𝐹𝑞 − 0 .  
 Insufficient, since 𝑑 >  𝑞. 
 𝑔′ 𝑡 ≜ derivative of 𝑔 wrt 𝑡 can be obtained 

from 𝑃𝑥 and 𝑃𝑦 (specifically, 𝑔’ = 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦) 
 Now have enough info to interpolate 𝑔(𝑡) and 

so can get 𝑔(0) 
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Locality – I (with errors) 

 Reconstructing 𝑃(𝑎, 𝑏) from 𝑓 ≈  𝑃. 
 Idea: Still decode along lines. 
 Pick line ℓ thru 𝑎, 𝑏 ∶ ℓ =  𝛼𝛼 +  𝑎,𝛽𝛽 +  𝑏 𝑡 . 
 Define 𝑔 𝑡 = 𝑃 𝛼𝛼 + 𝑎,𝛽𝛽 + 𝑏 .  
 deg 𝑔 ≤ 𝑑;  
 have correct value of 𝑔 𝑡 , for most 𝑡 ∈ 𝐹𝑞 − 0 .  
 Insufficient, since 𝑑 >  𝑞. 
 𝑔′ 𝑡 ≜ derivative of 𝑔 wrt 𝑡 can be obtained 

from 𝑃𝑥 and 𝑃𝑦 (specifically, 𝑔’ = 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦) 
 Now have enough info to decode 𝑔(𝑡) and so 

can get 𝑔(0) 
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Locality - II 

 Not done! also need to recover 𝑃𝑥 𝑎, 𝑏  and 𝑃𝑦 𝑎, 𝑏 .  
 Idea 1: 𝑃𝑥   is just another polynomial of degree 𝑑 

– can recover locally? 
 No! Don’t have 𝑃𝑥𝑥 ,𝑃𝑥𝑥 , etc. which would be 

needed. 
 Actual solution: 

 Using ℓ = 𝛼𝛼 +  𝑎,𝛽𝛽 +  𝑏 𝑡,  
                  can recover 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦. 
 Pick another random line and get 𝛼2 𝑃𝑥 + 𝛽2 𝑃𝑦.  
 Can recover 𝑃𝑥 and 𝑃𝑦 from the above. 

 Conclude: Decodable with 𝑂 𝑛  queries. 
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 Increase # variables to reduce locality to 𝑛
1
𝑚  

 Next, increase multiplicities 𝑠 (and degree) to get 
rate up to 1 − 𝛼 ! 

 Naively, fraction of errors corrected → Ω( 𝛿
𝑠𝑚

), 

where 𝛿 = 𝛼𝛼
8

. 

 Running time 𝑂(𝑠𝑚 𝑛3).  

 More sophisticated idea → 3
5
⋅ 𝛿 

 

Improving Rate, Locality 
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Derivatives? 

 Classical derivatives no good over finite fields 
 2nd  derivative of every poly. zero over 𝐹2𝑘 

 Hasse derivatives: 
 Univ. poly 𝑃: a root of mult. 𝑠 

 𝑥 − 𝑎 𝑠 divides 𝑃(𝑥)  
   ⇔    𝑥𝑠 divides 𝑃(𝑥 + 𝑎) 
   ⇔     𝑃 𝑖 𝑎 = 0, ∀ 𝑖 < 𝑠 where 𝑃(𝑥 + 𝑧)  = ∑ 𝑃(𝑖) 𝑥 ⋅ 𝑧𝑖𝑖  

 𝑃(𝑖) 𝑥  is the Hasse derivative of P(x). 

 Multiv. Poly? Just extend above notationally! 

 𝑧 =  𝑧1, … , 𝑧𝑚 , 𝑖 = 𝑖1, … , 𝑧𝑚 ,       𝑧𝑖   ≜  ∏ 𝑧𝑗
𝑖𝑗

𝑗   
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Concluding thoughts 

 Techniques: 
 Derivatives are not locally computable! 
 More multiplicities 
 More non-linear codes? 

 Theory? 
 Can we prove these codes are locally testable? 
 Can we get PCPs with such parameters?  

 Practice? 
 No more rate barrier to using locally decodable 

codes! When will we see these on USB sticks? 
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Thank You! 
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