
of 33 December 16, 2011 Multiplicity Codes 1 

Multiplicity Codes: 
Locality with High Efficiency 

Madhu Sudan 
Microsoft Research 

      
         

 

Based on [Kopparty, Saraf, Yekhanin (STOC 2011)] 



of 33 

Error-Correcting Codes 
 Used to store data over (noisy) storage 

media/communicate data over (noisy) channels. 
 Code (over alphabet Σ). 

 𝐸: Σ𝑘 → Σ𝑛;𝐶 = Image(𝐸); 
 Terminology:  

 Domain(𝐸) = messages; 𝐶 = codewords. 

 Rate(𝐶) = 𝑘
𝑛

. 

 Distance: For x, y ∈ Σ𝑛, 𝛿 𝑥,𝑦 = 1
𝑛

 𝑖   𝑥𝑖 ≠ 𝑦𝑖  | 

              𝛿 𝐶 = min
𝑢≠𝑣

{𝛿(𝐸 𝑢 ,𝐸 𝑣 } 

 Codes of interest: 𝑅 𝐶 , 𝛿 𝐶 > 0. 
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Algorithmic Problems in Coding Theory 

(Fix Code 𝐶 and encoding function 𝐸) 
 Encoding: 

 Given 𝑚 ∈ Σ𝑘, compute 𝐸(𝑚). 
 Error Detection/Testing: 

 Given 𝑤 ∈ Σ𝑛, determine if 𝑤 ∈ 𝐶. 
 Variations: Determine 𝛿 𝑤,𝐶 ≜ min

𝑥∈𝐶
 𝛿 𝑤, 𝑥  

(approximately). 
 Error Correction: 

 Given 𝑤 ∈ Σ𝑛 s.t. ∃ 𝑥 ∈ 𝐶 s.t. 𝛿 𝑤, 𝑥 ≤ 𝛿; 
compute 𝑥. 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 
 Answer 1: No 

 
 
 
 

f(x) 

Sublinear Algorithmics 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 
 Answer 1: No 
 Answer 2: Yes, provided: 

 Output represented implicitly 
 Input given as oracle 

 
 
 
 
 
 

f(x) 𝑓 𝑥 𝑖 

Sublinear Algorithmics 
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 For 𝑓: 0,1 𝑎 → 0,1 𝑏, can 𝑓(𝑥) be computed in 
𝑜 𝑎, 𝑏  time? 
 

 
 

 
 Answer 2: Yes, provided: 

 Output represented implicitly 
 Input given as oracle 
 Correctness guaranteed on approx. to input. 

 
 
 
 
 
 

𝑓 𝑥 𝑖 𝑓 𝑥� 𝑖 

Sublinear Algorithmics 
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Sub-linear time algorithms 

 Initiated in late eighties in context of 
 Program checking [BlumKannan,BlumLubyRubinfeld] 
 Interactive Proofs/PCPs [BabaiFortnowLund] 

 Now successful in many more contexts 
 Property testing/Graph-theoretic algorithms 
 Sorting/Searching 
 Statistics/Entropy computations 
 (High-dim.) Computational geometry  

 Many initial results are coding-theoretic! 
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Sub-linear time algorithms & Coding 

 Encoding: Not reasonable to expect in sub-linear 
time. 
 

 Testing? Decoding? – Can be done in sublinear 
time. 
 In fact many initial results do so! 

 
 Codes that admit efficient … 

 … testing: Locally Testable Codes (LTCs) 
 … decoding: Locally Decodable Codes (LDCs). 
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Rest of this talk 

 Definitions of LDCs  
 Some background/Basic Construction 
 Recent constructions of LDCs. 

 [Kopparty-Saraf-Yekhanin ‘11] 
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Locally Decodable Code (LDC) 

 Code 𝐶 with encoder 𝐸 is ℓ,𝛿 -LDC if there exists 
a (sublinear-time) decoding algorithm 𝐷 on  
 Input: 𝑖 ∈ 𝑘  and Oracle for 𝑤: 𝑛 → Σ, s.t. 
∃𝑚 ∈ Σ𝑘 s.t. 𝛿 𝑤,𝐸(𝑚) ≤ 𝛿, 

 Outputs: 𝑚𝑖 w.p. at least 2/3 
 Locality: makes only ℓ queries to 𝑤. 

 History:  
 Some implied LDCs from 1950s [Reed,Muller]. 
 Construction + Implied definitions 

[Babai,Fortnow,Lund,Szegedy’90]. 
 Explicit definitions [S.,Trevisan,Vadhan; Katz-

Trevisan] 
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Motivations 
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Motivations to study LTCs 

 Intimately related to concept of Probabilistically 
Checkable Proofs (PCPs):  
 Format for writing mathematical proofs that 

can be checked by few local probes. 
 (Key ingredient in many hardness of 

approximation results.) 
 Current state of art: 

 State of the art PCP/LTCs [BenSassonS,Dinur] 
 Parameters: 𝑘 bits to 𝑘 ⋅ poly log𝑘 bits. 
 Locality: O(1) queries. 
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Motivations to study LDCs 

 Hard-core predicates: Hard Boolean functions 
from general hard functions. 

 Hardness amplification: Functions that are hard 
to compute on random inputs, from worst-case 
hard functions. 

 Private Information Retrieval: Distributed 
information storage method which allows user to 
query information privately. 
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Why the negativity? 

 Why are local codes leading only to negative 
results? (inapprox, hard predicates, hard-on-
average functions, privacy schemes …) 

 What about the obvious positive possibility: on 
storage devices etc.? 
 Rate is too weak: 

 best known with sublinear decoding 
 Rate .5 for locality 𝑛 

 Rate 𝜖
1
𝜖   for locality 𝑛𝜖. 

 Provable lower bounds: 𝑛 1+1ℓ   [KatzTrevisan] 
 Practical settings: Rate .8, .9 etc. 
 December 16, 2011 Multiplicity Codes 15 
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Basic Constructions 
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Self-correctible codes 

 Will ask for (slightly?) stronger object: 
 Every letter of codeword locally recoverable. 

 (as opposed to message) 
 

 Why? 
 Simpler concept (depends only on code, not 

encoding function). 
 Implies existence of encoding function that 

leads to LDC. 
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Codes from Multivariate Polynomials. 

 Parameters: 𝐹𝑞 ,𝑚,𝑑  
 Message space: 𝑚-variate polynomials of degree 

at most 𝑑 over 𝐹𝑞 

 Encoding: Evaluations over 𝐹𝑞
𝑚 

 Resulting code parameters: 𝑛
𝑘  

 𝑛 = 𝑞𝑚  
 𝑘 =  𝑚+𝑑

𝑑   

 Distance ≥ 1 − 𝑑
𝑞

 (Can also use 𝑑 > 𝑞, with care) 
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Local decoding/Self-correction 
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• Codeword = Function 𝑃 on cube. 

• Rec’d word = Function 𝑓 on cube 
                  = 𝑃 with errors  

• Correction problem: Recover  
       codeword at point  

• Self-correction alg: 
• Look at 𝑓 on line 
• Recover 𝑃 on line (classical  
                             decoding)   

• Locality = 𝑞 = 𝑛1/𝑚 

𝐹𝑞
𝑚 
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Sample Parameters 

 Best locality: 
 𝑑 = 1, 𝑚 = 𝑘, 𝑞 =  2: 

 𝑛 = 2𝑘;  2-locally decodable code 
(“Hadamard code”) for ¼-fraction errors. 

 Weakest (sublinear) locality: 

 𝑚 = 2,  𝑞 = 𝑑
1 −2𝛿

      

 𝑘 = 𝑑+2
2 ≈ 𝑑2

2
 ; 𝑛 = 𝑞2 ≈ 2𝑘

1−2𝛿 2 ; 

 Locality = 𝑛 , correcting 𝛿 fraction errors 

 In general: locality 𝑛𝜖 at rate 𝜖
1
𝜖 with 𝑚 = 1/𝜖 
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The Rate < ½ barrier 

 To get Ω(1) distance, need 𝑑 <  𝑞. 
 To get non-trivial locality: 𝑚 ≥ 2. 
 Implies 𝑘 <  𝑞+2

2 ≈ 𝑞2/2, and 𝑛 = 𝑞^2. 
 Rate at most ½.  
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The new breakthrough 

 Multiplicity Codes [KSY ‘11] 
 Theorem: 

 For every 𝛼,𝛽 > 0,  ∃ 𝛿 > 0 s.t. ∀ 𝑛  
     there exist codes 𝐶𝑛  with 

 Rate 𝐶𝑛 ≥ 1 − 𝛼 
 𝐶𝑛 is 𝑛𝛽-locally-decodable from 𝛿 errors. 

 Rate arbitrarily close to 1  
 (not expected – at least not by me).  

 Locality arbitrarily small power of 𝑛.  
 Even concrete parameters are interesting. 
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Basic Idea: 

 Extend Multivariate Polynomial codes: 
 Encoding also includes evaluations of “partial 

derivatives”. 
 Cons: Now encoding is even more redundant, 

so we lose rate? 
 Pros: But we can use higher degrees. 

 E.g.: Fraction of points where are all zero is 
at most deg (𝑓)/2𝑞. 

 (𝑓𝑥 denotes “partial derivative” wrt 𝑥) 
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Hasse derivatives & Multiplicities 

 For every 𝑖 = 𝑖1, … , 𝑖𝑚 , there exists a notion of 
𝑖 th partial derivative of 𝑃 𝑥1, … , 𝑥𝑚 , denoted 𝑃(𝑖) 

 Order of 𝑖 = 𝑖1, … , 𝑖𝑚  is ∑ 𝑖𝑗𝑗  
 Mult 𝑃, 𝑎1, … ,𝑎𝑚 ≜ largest 𝑠 s.t. all derivatives of 
𝑃 of order <  𝑠 vanish at (𝑎1, … ,𝑎𝑚) 

 Multiplicity Schwartz-Zippel Lemma:  

                        Ε𝑎1,…,𝑎𝑚  Mult 𝑃, 𝑎1, … ,𝑎𝑚 ≤ deg 𝑃
𝑞
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Multiplicity Codes Example-1 

 Parameters: 𝑚 = 2, 𝑑 = 1 − 2𝛿 𝑞, 𝑠 = 2. 
 Alphabet = (𝐹𝑞)^3 
 Message = 𝑚-variate polynomials of degree d 

over 𝐹𝑞 

 Encoding(𝑃)  =  𝑃 𝑎, 𝑏 ,𝑃𝑥 𝑎, 𝑏 ,𝑃𝑦 𝑎, 𝑏
(𝑎,𝑏)

 

 Code parameters: 𝑛 = 𝑞2 ; 𝑘 ≈ 1
3
⋅ 𝑑

2

2
 ; 

 Rate 𝐶 ≈ 2
3

 as 𝛿 → 0 ;  
 Locality = ? 

 If so, sublinear locality at rate > 1
2
 ! 
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Locality – I (no errors) 

 Reconstructing 𝑃(𝑎, 𝑏) from 𝑓 =  𝑃. 
 Idea: Still decode along lines. 
 Pick line ℓ thru 𝑎, 𝑏 ∶ ℓ =  𝛼𝛼 +  𝑎,𝛽𝛼 +  𝑏 𝑡 . 
 Define 𝑔 𝛼 = 𝑃 𝛼𝛼 + 𝑎,𝛽𝛼 + 𝑏 .  
 deg 𝑔 ≤ 𝑑;  
 have correct value of 𝑔 𝛼 ,∀𝛼 ∈ 𝐹𝑞 − 0 .  
 Insufficient, since 𝑑 >  𝑞. 
 𝑔′ 𝛼 ≜ derivative of 𝑔 wrt 𝛼 can be obtained 

from 𝑃𝑥 and 𝑃𝑦 (specifically, 𝑔’ = 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦) 
 Now have enough info to interpolate 𝑔(𝛼) and 

so can get 𝑔(0) 
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Locality – I (with errors) 

 Reconstructing 𝑃(𝑎, 𝑏) from 𝑓 ≈  𝑃. 
 Idea: Still decode along lines. 
 Pick line ℓ thru 𝑎, 𝑏 ∶ ℓ =  𝛼𝛼 +  𝑎,𝛽𝛼 +  𝑏 𝑡 . 
 Define 𝑔 𝛼 = 𝑃 𝛼𝛼 + 𝑎,𝛽𝛼 + 𝑏 .  
 deg 𝑔 ≤ 𝑑;  
 have correct value of 𝑔 𝛼 , for most 𝛼 ∈ 𝐹𝑞 − 0 .  
 Insufficient, since 𝑑 >  𝑞. 
 𝑔′ 𝛼 ≜ derivative of 𝑔 wrt 𝛼 can be obtained 

from 𝑃𝑥 and 𝑃𝑦 (specifically, 𝑔’ = 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦) 
 Now have enough info to decode 𝑔(𝛼) and so 

can get 𝑔(0) 
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Locality - II 

 Not done! also need to recover 𝑃𝑥 𝑎, 𝑏  and 𝑃𝑦 𝑎, 𝑏 .  
 Idea 1: 𝑃𝑥   is just another polynomial of degree 𝑑 

– can recover locally? 
 No! Don’t have 𝑃𝑥𝑥 ,𝑃𝑥𝑦 , etc. which would be 

needed. 
 Actual solution: 

 Using ℓ = 𝛼𝛼 +  𝑎,𝛽𝛼 +  𝑏 𝑡,  
                  can recover 𝛼 𝑃𝑥  + 𝛽 𝑃𝑦. 
 Pick another random line and get 𝛼2 𝑃𝑥 + 𝛽2 𝑃𝑦.  
 Can recover 𝑃𝑥 and 𝑃𝑦 from the above. 

 Conclude: Decodable with 𝑂 𝑛  queries. 
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 Increase # variables to reduce locality to 𝑛
1
𝑚  

 Next, increase multiplicities 𝑠 (and degree) to get 
rate up to 1 − 𝛼 ! 

 Naively, fraction of errors corrected → Ω( 𝛿
𝑠𝑚

), 

where 𝛿 = 𝛼𝛽
8

. 

 Running time 𝑂(𝑠𝑚 𝑛3).  

 More sophisticated idea → 3
5
⋅ 𝛿 

 

Improving Rate, Locality 
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Derivatives? 

 Classical derivatives no good over finite fields 
 2nd  derivative of every poly. zero over 𝐹2𝑘 

 Hasse derivatives: 
 Univ. poly 𝑃: a root of mult. 𝑠 

 𝑥 − 𝑎 𝑠 divides 𝑃(𝑥)  
   ⇔    𝑥𝑠 divides 𝑃(𝑥 + 𝑎) 
   ⇔     𝑃 𝑖 𝑎 = 0, ∀ 𝑖 < 𝑠 where 𝑃(𝑥 + 𝑧)  = ∑ 𝑃(𝑖) 𝑥 ⋅ 𝑧𝑖𝑖  

 𝑃(𝑖) 𝑥  is the Hasse derivative of P(x). 

 Multiv. Poly? Just extend above notationally! 

 𝑧 =  𝑧1, … , 𝑧𝑚 , 𝑖 = 𝑖1, … , 𝑧𝑚 ,       𝑧𝑖   ≜  ∏ 𝑧𝑗
𝑖𝑗

𝑗   
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Concluding thoughts 

 Techniques: 
 Derivatives are not locally computable! 
 More multiplicities 
 More non-linear codes? 

 Theory? 
 Can we prove these codes are locally testable? 
 Can we get PCPs with such parameters?  

 Practice? 
 No more rate barrier to using locally decodable 

codes! When will we see these on USB sticks? 
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Thank You! 
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