Multiplicity Codes: Locality with High Efficiency

Madhu Sudan Microsoft Research

Based on [Kopparty, Saraf, Yekhanin (STOC 2011)]

December 16, 2011

Error-Correcting Codes

- Used to store data over (noisy) storage media/communicate data over (noisy) channels.
- Code (over alphabet Σ).
 - $E: \Sigma^k \to \Sigma^n; C = \text{Image}(E);$
 - Terminology:

Domain(E) = messages; C = codewords.

- Rate(C) = $\frac{k}{n}$.
- Distance: For $x, y \in \Sigma^n$, $\delta(x, y) = \frac{1}{n} |\{i \mid x_i \neq y_i\}|$ $\delta(C) = \min_{\{u \neq v\}} \{\delta(E(u), E(v))\}$
- Codes of interest: $R(C), \delta(C) > 0$.

December 16, 2011

Algorithmic Problems in Coding Theory

(Fix Code C and encoding function E)

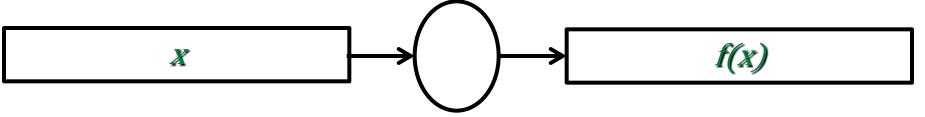
Encoding:

- Given $m \in \Sigma^k$, compute E(m).
- Error Detection/Testing:
 - Given $w \in \Sigma^n$, determine if $w \in C$.
 - Variations: Determine $\delta(w, C) \triangleq \min_{x \in C} \{\delta(w, x)\}$ (approximately).
- Error Correction:

• Given $w \in \Sigma^n$ s.t. $\exists x \in C$ s.t. $\delta(w, x) \leq \delta$; compute x.

Sublinear Algorithmics

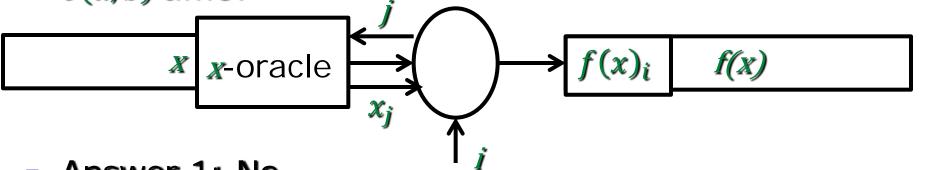
• For $f: \{0,1\}^a \rightarrow \{0,1\}^b$, can f(x) be computed in o(a, b) time?



Answer 1: No

Sublinear Algorithmics

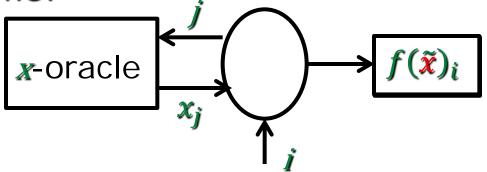
• For $f: \{0,1\}^a \rightarrow \{0,1\}^b$, can f(x) be computed in o(a,b) time?



- Answer 1: No
- Answer 2: Yes, provided:
 - Output represented implicitly
 - Input given as oracle

Sublinear Algorithmics

• For $f: \{0,1\}^a \rightarrow \{0,1\}^b$, can f(x) be computed in o(a,b) time?



- Answer 2: Yes, provided:
 - Output represented implicitly
 - Input given as oracle
 - Correctness guaranteed on approx. to input.

Sub-linear time algorithms

- Initiated in late eighties in context of
 - Program checking [BlumKannan,BlumLubyRubinfeld]
 - Interactive Proofs/PCPs [BabaiFortnowLund]
- Now successful in many more contexts
 - Property testing/Graph-theoretic algorithms
 - Sorting/Searching
 - Statistics/Entropy computations
 - High-dim.) Computational geometry
- Many initial results are coding-theoretic!

Sub-linear time algorithms & Coding

- Encoding: Not reasonable to expect in sub-linear time.
- Testing? Decoding? Can be done in sublinear time.
 - In fact many initial results do so!
- Codes that admit efficient ...
 - In testing: Locally Testable Codes (LTCs)
 - In the second second

Rest of this talk

- Definitions of LDCs
- Some background/Basic Construction
- Recent constructions of LDCs.
 - [Kopparty-Saraf-Yekhanin '11]

Definition

July 25, 2011

Local Error-Correction

10 of 33

Locally Decodable Code (LDC)

- Code C with encoder E is (ℓ, δ) -LDC if there exists a (sublinear-time) decoding algorithm D on
 - Input: $i \in [k]$ and Oracle for $w: [n] \to \Sigma$, s.t. $\exists m \in \Sigma^k$ s.t. $\delta(w, E(m)) \leq \delta$,
 - Outputs: m_i w.p. at least 2/3
 - Locality: makes only *ℓ* queries to *w*.
- History:
 - Some implied LDCs from 1950s [Reed,Muller].
 - Construction + Implied definitions [Babai,Fortnow,Lund,Szegedy'90].

Explicit definitions [S., Trevisan, Vadhan; Katz-Trevisan]

December 16, 2011

Motivations

Motivations to study LTCs

- Intimately related to concept of Probabilistically Checkable Proofs (PCPs):
 - Format for writing mathematical proofs that can be checked by few local probes.
 - (Key ingredient in many hardness of approximation results.)
 - Current state of art:
 - State of the art PCP/LTCs [BenSassonS, Dinur]
 - Parameters: k bits to $k \cdot \operatorname{poly} \log k$ bits.
 - Locality: O(1) queries.

Motivations to study LDCs

- Hard-core predicates: Hard Boolean functions from general hard functions.
- Hardness amplification: Functions that are hard to compute on random inputs, from worst-case hard functions.
- Private Information Retrieval: Distributed information storage method which allows user to query information privately.

Why the negativity?

- Why are local codes leading only to negative results? (inapprox, hard predicates, hard-onaverage functions, privacy schemes ...)
- What about the obvious positive possibility: on storage devices etc.?
 - Rate is too weak:
 - best known with sublinear decoding
 - Rate .5 for locality \sqrt{n}
 - Rate $\epsilon^{\frac{1}{\epsilon}}$ for locality n^{ϵ} .

Provable lower bounds: n^{1+¹/_e} [KatzTrevisan]
 Practical settings: Rate .8, .9 etc.

December 16, 2011

Basic Constructions

July 25, 2011

Local Error-Correction

16 of 33

Self-correctible codes

Will ask for (slightly?) stronger object:

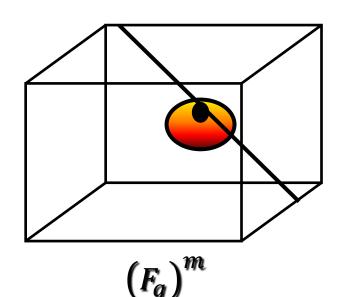
- Every letter of codeword locally recoverable.
 (as opposed to message)
- Why?
 - Simpler concept (depends only on code, not encoding function).
 - Implies existence of encoding function that leads to LDC.

Codes from Multivariate Polynomials.

- Parameters: F_q, m, d
- Message space: m-variate polynomials of degree at most d over Fq
- Encoding: Evaluations over $(F_q)^m$
- Resulting code parameters: $\binom{n}{k}$

n = q^m
k =
$$\binom{m+d}{d}$$
Distance ≥ 1 - $\frac{d}{a}$ (Can also use d > q, with care)

Local decoding/Self-correction



- Codeword = Function P on cube.
- Rec'd word = Function f on cube
 = P with errors
- Correction problem: Recover codeword at point ●
- Self-correction alg:
 - Look at f on line
 - Recover P on line (classical

decoding)

• Locality = $q = n^{1/m}$

December 16, 2011

Sample Parameters

Best locality:

Weakest (sublinear) locality:

•
$$m = 2$$
, $q = \frac{d}{1-2\delta}$
• $k = \binom{d+2}{2} \approx \frac{d^2}{2}$; $n = q^2 \approx \frac{2k}{(1-2\delta)^2}$;

• Locality = \sqrt{n} , correcting δ fraction errors

• In general: locality n^{ϵ} at rate $\epsilon^{\frac{1}{\epsilon}}$ with $m = 1/\epsilon$

December 16, 2011

The Rate < 1/2 barrier

- To get $\Omega(1)$ distance, need d < q.
- To get non-trivial locality: $m \ge 2$.
- Implies $k < \binom{q+2}{2} \approx q^2/2$, and $n = q^2$.
- Rate at most ½.

The new breakthrough

- Multiplicity Codes [KSY '11]
- Theorem:
 - For every $\alpha, \beta > 0$, $\exists \delta > 0$ s.t. $\forall n$
 - there exist codes C_n with
 - Rate(C_n) ≥ 1 α
 - C_n is n^{β} -locally-decodable from δ errors.
- Rate arbitrarily close to 1
 - (not expected at least not by me).
- Locality arbitrarily small power of n.
- Even concrete parameters are interesting.

Multiplicity Codes

July 25, 2011

Local Error-Correction

23 of 33

Basic Idea:

- Extend Multivariate Polynomial codes:
 - Encoding also includes evaluations of "partial derivatives".
 - Cons: Now encoding is even more redundant, so we lose rate?
 - Pros: But we can use higher degrees.
 - E.g.: Fraction of points where are all zero is at most deg(f)/2q.
 - (f_x denotes "partial derivative" wrt x)

Hasse derivatives & Multiplicities

- For every $i = (i_1, ..., i_m)$, there exists a notion of *i* th partial derivative of $P(x_1, ..., x_m)$, denoted $P^{(i)}$
- Order of $i = (i_1, ..., i_m)$ is $\sum_j i_j$
- Mult(P, (a₁, ..., a_m)) ≜ largest s s.t. all derivatives of P of order < s vanish at (a₁, ..., a_m)
- Multiplicity Schwartz-Zippel Lemma:

$$\mathbf{E}_{a_1,\ldots,a_m}\left[\operatorname{Mult}(P,(a_1,\ldots,a_m))\right] \leq \frac{\operatorname{deg}(P)}{q}$$

Multiplicity Codes Example-1

- Parameters: m = 2, $d = (1 2\delta)q$, s = 2.
- Alphabet = $(F_q)^3$
- Message = m-variate polynomials of degree d over Fq
- Encoding(P) = $\left\{ \left(P(a,b), P_x(a,b), P_y(a,b) \right) \right\}_{(a,b)}$
- Code parameters: $n = q^2$; $k \approx \frac{1}{3} \cdot \frac{d^2}{2}$;

• Rate(C)
$$\approx \frac{2}{3}$$
 (as $\delta \rightarrow 0$);

• Locality = ? Hopefully: $O(q) = O(\sqrt{n})$.

• If so, sublinear locality at rate $>\frac{1}{2}!$

December 16, 2011

Locality – I (no errors)

- Reconstructing P(a, b) from f = P.
 - Idea: Still decode along lines.
 - Pick line ℓ thru $(a,b): \ell = \{(\alpha t + a, \beta t + b)\}_t$.
 - Define $g(t) = P(\alpha t + \alpha, \beta t + b)$.
 - $\deg(g) \leq d;$
 - have correct value of g(t), $\forall t \in F_q \{0\}$.
 - Insufficient, since d > q.
 - $g'(t) \triangleq$ derivative of g wrt t can be obtained from P_x and P_y (specifically, $g' = \alpha P_x + \beta P_y$)
 - Now have enough info to interpolate g(t) and so can get g(0)

December 16, 2011

Locality – I (with errors)

- Reconstructing P(a, b) from $f \approx P$.
 - Idea: Still decode along lines.
 - Pick line ℓ thru $(a,b): \ell = \{(\alpha t + a, \beta t + b)\}_t$.
 - Define $g(t) = P(\alpha t + \alpha, \beta t + b)$.
 - $\deg(g) \leq d;$
 - have correct value of g(t), for most $t \in F_q \{0\}$.
 - Insufficient, since d > q.
 - $g'(t) \triangleq$ derivative of g wrt t can be obtained from P_x and P_y (specifically, $g' = \alpha P_x + \beta P_y$)
 - Now have enough info to decode g(t) and so can get g(0)

December 16, 2011

Locality - II

- Not done! also need to recover $P_x(a, b)$ and $P_y(a, b)$.
- Idea 1: P_x is just another polynomial of degree d– can recover locally?
 - No! Don't have P_{xx}, P_{xy}, etc. which would be needed.
- Actual solution:
 - Using $\ell = (\alpha t + a, \beta t + b)_t$,

can recover $\alpha P_x + \beta P_y$.

- Pick another random line and get $\alpha_2 P_x + \beta_2 P_y$.
- Can recover P_x and P_y from the above.
- Conclude: Decodable with $O(\sqrt{n})$ queries.

December 16, 2011

Improving Rate, Locality

- Increase # variables to reduce locality to $n^{\frac{1}{m}}$
- Next, increase multiplicities s (and degree) to get rate up to 1 – α!
- Naively, fraction of errors corrected $\rightarrow \Omega(\frac{\delta}{s^m})$, where $\delta = \frac{\alpha \beta}{8}$.
- Running time $O(s^m n^3)$.
- More sophisticated idea $\rightarrow \frac{3}{5} \cdot \delta$

Derivatives?

- Classical derivatives no good over finite fields
 2nd derivative of every poly. zero over F_{2^k}
- Hasse derivatives:
 - Univ. poly P: a root of mult. s
 - $(x-a)^s$ divides P(x)
 - \Leftrightarrow x^s divides P(x + a)

 $\Leftrightarrow P^{(i)}(a) = 0, \forall i < s \text{ where } P(x + z) = \sum_{i} P^{(i)}(x) \cdot z^{i}$

• $P^{(i)}(x)$ is the Hasse derivative of P(x).

Multiv. Poly? Just extend above notationally!

$$z = (z_1, ..., z_m), i = (i_1, ..., z_m), \quad z^i \triangleq \prod_j z_j^{i_j}$$

December 16, 2011

Concluding thoughts

Techniques:

- Derivatives are not locally computable!
- More multiplicities
- More non-linear codes?
- Theory?
 - Can we prove these codes are locally testable?
 - Can we get PCPs with such parameters?

Practice?

No more rate barrier to using locally decodable codes! When will we see these on USB sticks?

Thank You!

July 25, 2011

Local Error-Correction

33 of 33