Local List Decoding

March 2, 2011

Local List Decoding @ IPAM

1 of 31

Overview

- Last 20 years:
 - Lots of work on List Decoding
 - Lots of work on Local Decoding
- Today:

A look at the intersection: Local List Decoding

- Part I: The accidental beginnings
- Part II: Some applications
- Part III: Some LLD codes
- Part IV: Current works

Part I: History

March 2, 2011

Local List Decoding @ IPAM

3 of 31

List Decodable Code

- Encoding function: E: $\Sigma^k \to \Sigma^n$
- Code: C = Image(E)
- $\begin{array}{ll} \bullet & (\rho,L) \ \text{-List-Decodable Code: } \forall \ r \in \Sigma^n, \\ & \#\{w \in C \ \mid \Delta(r,w) \leq \rho.n\} \leq L. \end{array}$
- List-decoder: Outputs list, given r.
- [Elias '57, Wozencraft '58]

Local (Unique) Decoding

ρ-decoder:

- Has access to r s.t. $\Delta(r, E(m)) \leq \rho.n$
- Outputs m.
- p-local decoder:
 - Has query access to r: $[n] \rightarrow \Sigma$.
 - Input: i ∈ [k]
 - Outputs: m_i

(ρ,t)-LDC: makes ≤ t queries for every r,i.

Local List Decoding

- p-List decoder:
 - Access to $r \in \Sigma^n$
 - Outputs $\{m_1, ..., m_L\} = \{m \mid \Delta(r, E(m)) \le \rho.n\}$

(ρ,t)-list decoder:

- Query access to $r:[n] \rightarrow \Sigma$
- Inputs: i ∈ [k], j ∈ [L]
- Outputs: (m_j)_i
- Note: numbering m₁,...,m_L may be arbitrary; but consistent as we vary i.

March 2, 2011

(Convoluted) History

1950 [Reed+Muller]:

- Code due to Muller; Decoder due to Reed.
 - "Majority-logic" decoder: Essentially a local decoder for ρ < distance/2,
 - Not stated/analyzed in local terms.

1957 [Elias]

- Defined List Decoding.
- Analyzed in "random-error" setting only.
- [1980s] Many works on random-self-reducibility
 - Essentially: Local decoders (for un/natural codes).

(Convoluted) History

- 1986 [Goldreich-Levin]:
 - Local List-decoder for Hadamard code.
 - No mention of any of the words in paper.
 - "List-decoding" in acknowledgments.
 - But idea certainly there also in [Levin 85]
 - (many variations since: KM, GRS).
- 90-92 [BeaverFeigenbaum, Lipton, GemmellLiptonRubinfeldSWigderson,GemmellS.]:
 - Local decoder for generalized RM codes.
- 96,98 [Guruswami+S]:
 - List-decoder for Reed-Solomon codes.

March 2, 2011

(Convoluted) History

1999 [S.TrevisanVadhan]:

- Local List-Decoding defined
- LLD for Generalized RM code.
- 2000 [KatzTrevisan]:
 - Local Decoding defined.
 - Lower bounds for LDCs.

Why Convoluted?

- What is convoluted?
 - Big gap (positive/negative) between definitions and algorithms
- Why?
 - Motivations/Applications changing.
 - Algorithms not crucial to early applications
 - Some applications needed specific codes
 - Different communities involved
 - Information theory/Coding theory
 - CS: Complexity/Crypto/Learning

Part II: Applications

March 2, 2011

Local List Decoding @ IPAM

11 of 31

Hardcore Predicates

- $f: \{0,1\}^n \rightarrow \{0,1\}^n$ is a owf if
 - f easy to compute
 - f⁻¹ hard on random inputs:
 - random: given y = f(x) for uniform x, output x' in f⁻¹(y).
 - hard: every polytime alg. succeeds with negligible probability.
- b: {0,1}ⁿ → {0,1} is hardcore predicate for f, if f remains hard to invert given b(x) and f(x)

Hardcore Predicates

 b: {0,1}ⁿ × [M] → {0,1} is a (randomized) hardcore predicate for f, if b(x,s) hard to predict w.p. ½ + €, given f(x) and s.

- [BlumMicali,Yao,GoldreichLevin]: 1-1 owf f + hardcore b ⇒ pseudorandom generator.
- [GoldreichLevin, Impagliazzo]:
 If E: {0,1}^k → {0,1}^m is a (½ ε,poly(n))-LLDC, then b(x,s) = E(x)_s is a hardcore predicate for every owf f.

March 2, 2011

Proof of [GL,I]

- Suppose A predicts b(x,s) given f(x), s
- Fix f(x); let r(s) = A(f(x),s).
- Run Decoder(r,i,j) for all i,j to recover {x₁,...,x_L}.
- Check if $f(x_i) = f(x)!$
- (Easy) Claim: This recovers f⁻¹(f(x)) w.h.p.

Thoughts

- Did [GL] really need Local List-Decoding?
 - No. Simple LDC mapping k to poly(k) bits would do.
 - Unfortunately, none was known with poly(k) time list-decoder.
 - GL: Designed (½ epsilon,poly(k))-LLDC for Hadamard code (which maps k bits to 2^k bits).

Hardness amplification

Classical quest in complexity:

- Find hard functions (for some class). E.g.,
 - $\bullet f \in \mathsf{NP} \mathsf{P}$
 - $f \in PSPACE P$
 - Story so far: Can't find such.
- Modern question:
 - Find functions that are really hard.
 - Boolean $f \in NP$ that is hard to distinguish from random function in P.

Hardness amplification

- Thm [Lipton, ..., S. Trevisan Vadhan]:
 - Let f: {0,1}^k → {0,1} be a hard to compute in time poly(k).
 - Let E: $\{0,1\}^{K} \rightarrow \{0,1\}^{N}$ be $(\frac{1}{2}-\varepsilon, \text{poly}(k))$ locally-list-decodable with $K = 2^{k}$, $N = 2^{n}$.
 - Then g: {0,1}ⁿ → {0,1} given by g = E(f) is hard to distinguish from random for poly(k) time algorithms.
- Proof: Obvious from definitions.

Agnostic Learning

General goal of learning theory:

- Given a class of functions F;
- query/sample access to f ∈ F;
- "Learn f" (or circuit (approx.) computing it).
- Learning with Noise:
 - f not in F, but well-approximated by some function in F
- Agnostic Learning:
 - No relationship between f and F;
 - learn some approximation of f in F (if it exists).
- Useful in applications, as well as theory.

Agnostic Learning (contd.)

GL result (Kushilevitz-Mansour interpretation):

- Can agnostically learn linear approximations to Boolean functions, with queries.
- Kushilevitz-Mansour:
 - List-decoding helps even more: Can learn decision trees.

Jackson:

Also CNF/DNF formulae ...

Part III: Some LLD Codes

March 2, 2011

Local List Decoding @ IPAM

20 of 31

Hadamard Code

- Code: Maps {0,1}^k → {0,1}^{2^k.}
- Codewords:
 - functions from $\{0,1\}^k \rightarrow \{0,1\}$.
 - Encoding of $m = \langle m_1, ..., m_k \rangle$ is the function $E_m(y_1 \dots y_k) = \Sigma_{i=1}^k m_i y_i \pmod{2}.$
 - I.e., codewords are homogenous, k-variate, degree 1 polynomials over GF(2).

Decoding Hadamard Code (GL/KM)

Preliminaries:

- View words as functions mapping to {+1,-1}.
- $< f,g > = Exp_y [f(y).g(y)].$
- < E(a), E(b) > = 0 if $a \neq b$ and $1 \circ w$.
- Let $f_a = \langle f, E(a) \rangle$. Then $f[x] = \sum_a f_a E(a)[x]$

• For all f,
$$\sum_a f_a^2 = 1$$
.

• $(\frac{1}{2} - \epsilon)$ -List decoding: Given f, find all a such that $f_a > 2\epsilon$.

Decoding Hadamard Code [GL/KM]

- Consider 2ⁿ sized binary tree.
- Node labelled by path to root.
- Value of leaf $a = f_a^2$
- Value of node
 - = sum of children values
- Main idea: Can approximate value of any node

 $\mathbf{O}\mathbf{O}$

• $\sum_{b} f_{ab}^2 = Exp_{x,y,z} [f(xz).f(yz).E_a(x).E_a(y)]$

Algorithm:

- Explore tree root downwards.
- Stop if node value less than ε²
- Report all leaves found.

Φ

0

(Generalized) Reed-Muller Code

- Message space = m-variate, degree r polynomials over GF(q).
- Encoding: Values over all points.

•
$$k = \binom{m+r}{r}$$

• $n = q^m$
• distance = $1 - r/q$ (if $r < q$).
 $\approx q^{-r/(q-1)}$ if $r > q$.

 Decoding problem: Given query access to function that is close to polynomial, find all nearby polynomials, locally.

March 2, 2011

Decoding (contd.)

- Specifically:
 - Given query access to f, and x ∈ GF(q)^m
 - Output p₁(x),..., p_L(x) "consistently", where p_j's are polynomials within distance ρ of f.
- How to index the codewords?
 - By values at a few (random) points in GF(q)^m.
 - Claim: Specifying value of p at (roughly) log_qL points specifies it uniquely (given f).

Decoding (contd.)

Refined question:

- Given query access to f, and values p_j(y₁),...,p_j(y_t), and x;
- Compute p_j(x)

Alg [Rackoff, STV, GKZ]

- Pick random (low-dim) subspace containing y₁,...,y_t and x.
- Brute force decode f restricted to this subspace.

Part IV: Current Directions

March 2, 2011

Local List Decoding @ IPAM

27 of 31

Many interpretations of GL

- List-decoder for group homomorphisms [Dinur Grigorescu Kopparty S.]
 - Set of homomorphisms from G to H form an error-correcting code.
 - Decode upto minimum distance?
- List-decoder for sparse high-distance linear codes [Kopparty Saraf]

 List-decoder for Reed-Muller codes [Gopalan Klivans Zuckerman]

March 2, 2011

Local List Decoding @ IPAM

Approximate List-Decoding

- Given r, <u>approximately</u> compute w in C that is somewhat close to r.
- Easier problem, so should be solvable for broader class of codes C (C need not have good distance).
- [O'Donnell, Trevisan, IJK]: If encoder for C is monotone and local, then get hardness amplification for NP.
- [IJK] Give approximate-LLD for "truncated Hadamard code".

March 2, 2011

Local List Decoding @ IPAM

Conclusions

- Intersection of Locality and List-decoding interesting and challenging.
- Ought to be explored more?

Thank You!

March 2, 2011

Local List Decoding @ IPAM

31 of 31