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Agenda

 A technique for combinatorics, via algebra:
 Polynomial (Interpolation) Method + Multiplicity 

method
 List-decoding of Reed-Solomon Codes
 Bounding size of Kakeya Sets
 Extractor constructions
 (won’t cover) Locally decodable codes
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Part I: Decoding Reed-Solomon Codes

 Reed-Solomon Codes:
 Commonly used codes to store information (on 

CDs, DVDs etc.)
 Message: C0, C1, …, Cd є F (finite field)

 Encoding:
 View message as polynomial: M(x) = ∑i=0

d Ci xi

 Encoding = evaluations: { M(®) }_{ ® є F }

 Decoding Problem:
 Given: (x1,y1) … (xn,yn) є F x F; integers t,d; 
 Find: deg. d poly through t of the n points.
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List-decoding?

 If #errors (n-t) very large, then several 
polynomials may agree with t of n points.
 List-decoding problem: 

 Report all such polynomials.
 Combinatorial obstacle: 

 There may be too many such polynomials. 
 Hope – can’t happen. 
 To analyze: Focus on polynomials P1,…, PL

and set of agreements S1 … SL.
 Combinatorial question: Can S1, … SL be large, 

while n = | [j Sj | is small? 
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List-decoding of Reed-Solomon codes

 Given L polynomials P1,…,PL of degree d; and sets 
S1,…,SL ½ F £ F s.t.

 |Si| = t
 Si ½ {(x,Pi(x)) | x 2 F}

 How small can n = |S| be, where S = [i Si ?

 Algebraic analysis from [S. ‘96, GuruswamiS ’98] 
basis of decoding algorithms.
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List-decoding analysis [S ‘96]
 Construct Q(x,y) ≠ 0 s.t.

 Degy(Q) < L
 Degx(Q) < n/L   
 Q(x,y) = 0 for every (x,y) 2 S = [i Si

 Can Show: 
 Such a Q exists (interpolation/counting).
 Implies: t > n/L + dL ) (y – Pi(x)) | Q

 Conclude: n ¸ L¢ (t – dL).
 (Can be proved combinatorially also;

using inclusion-exclusion)
 If L > t/(2d), yield n ¸ t2/(4d)
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Focus: The Polynomial Method

 To analyze size of “algebraically nice” set S:
 Find polynomial Q vanishing on S;

 (Can prove existence of Q by counting 
coefficients … degree Q grows with |S|.)

 Use “algebraic niceness” of S to prove Q 
vanishes at other places as well.
 (In our case whenever y = Pi(x) ).

 Conclude Q zero too often (unless S large).

…            (abstraction based on [Dvir]’s work)
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Improved L-D. Analysis [G.+S. ‘98]

 Can we improve on the inclusion-exclusion 
bound? One that works when n > t2/(4d)?

 Idea: Try fitting a polynomial Q that passes
through each point with “multiplicity” 2.
 Can find with Degy < L, Degx < 3n/L.
 If 2t > 3n/L + dL then (y-Pi(x)) | Q.
 Yields n ¸ (L/3).(2t – dL)
 If L>t/d, then n ¸ t2/(3d).

 Optimizing Q; letting mult. → 1, get n ¸ t2/d
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Aside: Is the factor of 2 important?

 Results in some improvement in [GS] (allowed us 
to improve list-decoding for codes of high rate) …

 But crucial to subsequent work 
 [Guruswami-Rudra] construction of rate-

optimal codes: Couldn’t afford to lose this 
factor of 2 (or any constant > 1).
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Focus: The Multiplicity Method
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Multiplicity = ?
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Part II: Kakeya Sets
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Kakeya Sets
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Kakeya Set analysis [Dvir ‘08]

 Find Q(x1,…,xn) ≠ 0 s.t.
 Total deg. of Q < q (let deg. = d)
 Q(x) = 0 for every x 2 K. (exists if |K| < qn/n!)

 Prove that (homogenous deg. d part of) Q
vanishes on y, if there exists a line in direction y 
that is contained in K.
 Line L ½ K ) Q|L = 0. 
 Highest degree coefficient of Q|L is 

homogenous part of Q evaluated at y.
 Conclude: homogenous part of Q = 0.     ><.
 Yields |K| ¸ qn/n!.
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Multiplicities in Kakeya [Saraf, S ’08]

 Fit Q that vanishes often?
 Good choice: #multiplicity m = n
 Can find Q ≠ 0 of individual degree < q, that 

vanishes at each point in K with multiplicity n, 
provided |K| 4n < qn

 Q|L is of degree < qn.
 But it vanishes with multiplicity n at q points!
 So it is identically zero ) its highest degree 

coeff. is zero.            ><

 Conclude: |K| ¸ (q/4)n
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Comparing the bounds

 Simple: |K| ¸ qn/2

 [Dvir]: |K| ¸ qn/n!
 [SS]: |K| ¸ qn/4n

 [SS] improves Simple even when q (large) 
constant and n → 1 (in particular, allows q < n)

 [MockenhauptTao, Dvir]: 
9 K s.t. |K| · qn/2n-1 + O(qn-1)

 Can we do even better?
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Part III: 
Randomness Mergers & Extractors
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Context

 One of the motivations for Dvir’s work:
 Build better “randomness extractors”
 Approach proposed in [Dvir-Shpilka]
 Following [Dvir] , new “randomness merger” 

and analysis given by [Dvir-Wigderson]
 Led to “extractors” matching known 

constructions, but not improving them …

 What are Extractors? Mergers? … can we improve 
them?
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Randomness Extractors and Mergers

 Extractors: 

 Dirty randomness → Pure randomness

 Mergers: General primitive useful in the context 
of manipulating randomness.

 k random variables → 1 random variable
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(Biased, correlated) (Uniform, independent … nearly)
+ small pure seed

(One of them uniform) (high entropy)
(Don’t know which, others 
potentially correlated)

+ small pure seed
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Merger Analysis Problem 

 Merger(X1,…,Xk; s) = f(s),
where X1, …, Xk 2 Fq

n; s 2 Fq

and f is deg. k-1 function mapping F → Fn

s.t. f(i) = Xi.
(f is the curve through X1,…,Xk)

 Question: For what choices of q, n, k is Merger’s
output close to uniform?

 Arises from [DvirShpilka’05, DvirWigderson’08].
 “Statistical high-deg. version” of Kakeya problem.
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Concerns from Merger Analysis

 [DW] Analysis: Worked only if q > n.
 So seed length = log2 q > log2 n
 Not good enough for setting where k = O(1), 

and n → 1. 
 (Would like seed length to be O(log k)).

 Multiplicity technique:
 seems bottlenecked at mult = n.
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General obstacle in multiplicity method

 Can’t force polynomial Q to vanish with too high 
a multiplicity. Gives no benefit.

 E.g. Kakeya problem: Why stop at mult = n?
 Most we can hope from Q is that it vanishes on 

all of qn; 
 Once this happens, Q = 0, if its degree is < q 

in each variable. 
 So Q|L is of degree at most qn, so mult n 

suffices. Using larger multiplicity can’t help!
 Or can it?
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Extended method of multiplicities

 (In Kakeya context):
 Perhaps vanishing of Q with high multiplicity at 

each point shows higher degree polynomials 
(deg > q in each variable) are identically zero?
 (Needed: Condition on multiplicity of zeroes 

of multivariate polynomials .)
 Perhaps Q can be shown to vanish with high 

multiplicity at each point in Fn.
 (Technical question: How?)
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Vanishing of high-degree polynomials

 Mult(Q,a) = multiplicity of zeroes of Q at a.
 I(Q,a) = 1 if mult(Q,a) > 0 and 0 o.w. 

= min{1, mult(Q,a)}

 Schwartz-Zippel: for any S ½ F 
∑ I(Q,a) · d. |S|n-1   where sum is over a 2 Sn

 Can we replace I with mult above? Would 
strengthen S-Z, and be useful in our case.

 [DKSS ‘09]: Yes … (simple inductive proof 
… that I can never remember)
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Multiplicities?

 Q(X1,…,Xn) has zero of mult. m at a = (a1,…,an) if 
all (Hasse) derivatives of order < m vanish.

 Hasse derivative = ?
 Formally defined in terms of coefficients of Q, 

various multinomial coefficients and a.
 But really …

 The i = (i1,…, in)th derivative is the 
coefficient of z1

i1…zn
in in Q(z + a).

 Even better … coeff. of zi in Q(z+x) 
 (defines ith derivative Qi as a function of x; 

can evaluate at x = a).
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Key Properties

 Each derivative is a linear function of coefficients 
of Q. [Used in [GS’98], [SS’09] .] (Q+R)i = Qi + Ri

 Q has zero of mult m at a, and S is a curve that 
passes through a, then Q|S has zero of mult m at 
a. [Used for lines in prior work.]

 Qi is a polynomial of degree deg(Q) - ∑j ii (not 
used in prior works)

 (Qi)j ≠ Qi+j, but Qi+j(a) = 0 ) (Qi)j(a) = 0
 Q vanishes with mult m at a

) Qi vanishes with mult m - ∑j ii at a.
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Propagating multiplicities (in Kakeya)

 Find Q that vanishes with mult m on K
 For every i of order m/2, Q_i vanishes with mult

m/2 on K.
 Conclude: Q, as well as all derivatives of Q of 

order m/2 vanish on Fn

) Q vanishes with multiplicity m/2 on Fn

 Next Question: When is a polynomial (of deg >
qn, or even qn) that vanishes with high 
multiplicity on qn identically zero?
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Back to Kakeya

 Find Q of degree d vanishing on K with mult m. 
(can do if (m/n)n |K| < (d/n)n , dn > mn |K| )

 Conclude Q vanishes on Fn with mult. m/2.
 Apply Extended-Schwartz-Zippel to conclude

(m/2) qn < d qn-1

, (m/2) q < d
, (m/2)n qn < dn = mn |K| 

 Conclude: |K| ¸ (q/2)n

 Tight to within 2+o(1) factor!
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Consequences for Mergers

 Can analyze [DW] merger when q > k very small, 
n growing; 
 Analysis similar, more calculations.
 Yields: Seed length log q (independent of n).

 By combining it with every other ingredient in 
extractor construction: 
 Extract all but vanishing entropy (k – o(k) bits 

of randomness from (n,k) sources) using O(log 
n) seed (for the first time).
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Other applications

 [Woodruff-Yekhanin ‘05]: An elegant construction 
of novel “LDCs (locally decodable codes)”. 
[Outclassed by more recent Yekhanin/Efremenko
constructions.]

 [Kopparty-Lev-Saraf-S. ‘09]: Higher dimensional 
Kakeya problems.

 [Kopparty-Saraf-Yekhanin ‘2011]: Locally 
decodable codes with Rate → 1.

June 13-18, 2011 32Mutliplicities @ CSR



of 33

Conclusions

 New (?) technique in combinatorics …

 Polynomial method + Multiplicity method
 Supporting evidence:

 List decoding
 Kakeya sets
 Extractors/Mergers
 Locally decodable codes …

 More?
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