Invariance in Property Testing

Madhu Sudan Microsoft Research

Based on: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka.

Property Testing

- Sublinear time algorithms:
 - Algorithms running in time o(input), o(output).
 - Probabilistic.
 - Correct on (approximation) to input.
 - Input given by oracle, output implicit.
 - Crucial to modern context
 - (Massive data, no time).
- Property testing:
 - Restriction of sublinear time algorithms to decision problems (output = YES/NO).
- Amazing fact: Many non-trivial algorithms exist!

Example 1: Polling

- Is the majority of the population Red/Blue
 - Can find out by random sampling.
 - Sample size k margin of error
 - Independent of size of population

Other similar examples: (can estimate other moments ...)

Example 2: Linearity

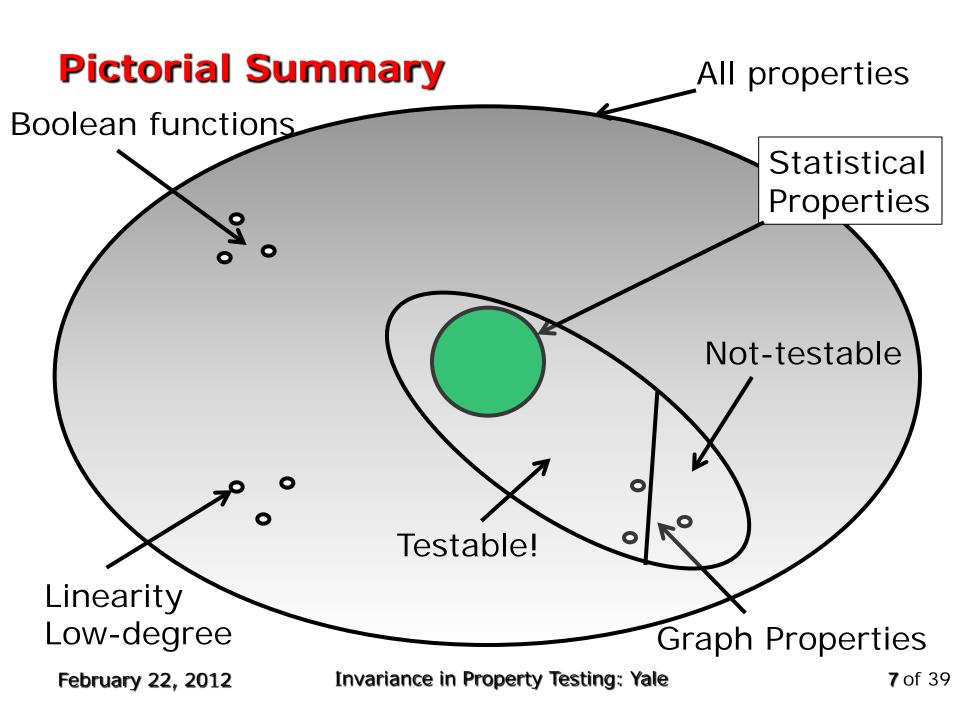
- Can test for homomorphisms:
 - Given: f: G → H (G,H finite groups), is f essentially a homomorphism?
 - Test:
 - Pick x,y in G uniformly, ind. at random;
 - \blacksquare Verify $f(x) \notin f(y) = f(x \notin y)$
 - Completeness: accepts homomorphisms w.p. 1(Obvious)
 - Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 - (Not obvious, [BlumLubyRubinfeld'90])

History (slightly abbreviated)

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing; Formal definition.
- [Goldreich, Goldwasser, Ron]
 - Graph property testing; Systematic study.
- Since then ... many developments
 - More graph properties, statistical properties, matrix properties, properties of Boolean functions ...
 - More algebraic properties

Aside: Story of graph property testing

- Initiated by [GoldreichGoldwasserRon] (dense graphs) and [GoldreichRon] (sparse graphs).
- Focus of intensive research.
- Near classification for dense graphs:
 - Works of Alon, Shapira and others (relate to Szemerdi's regularity lemma)
 - Works of Lovasz, B. Szegedy and others (theory of graph limits).
- Significant progress in sparse graph case also:
 - [Benjamini, Schramm, Shapira]
 - [Nguyen, Onak]

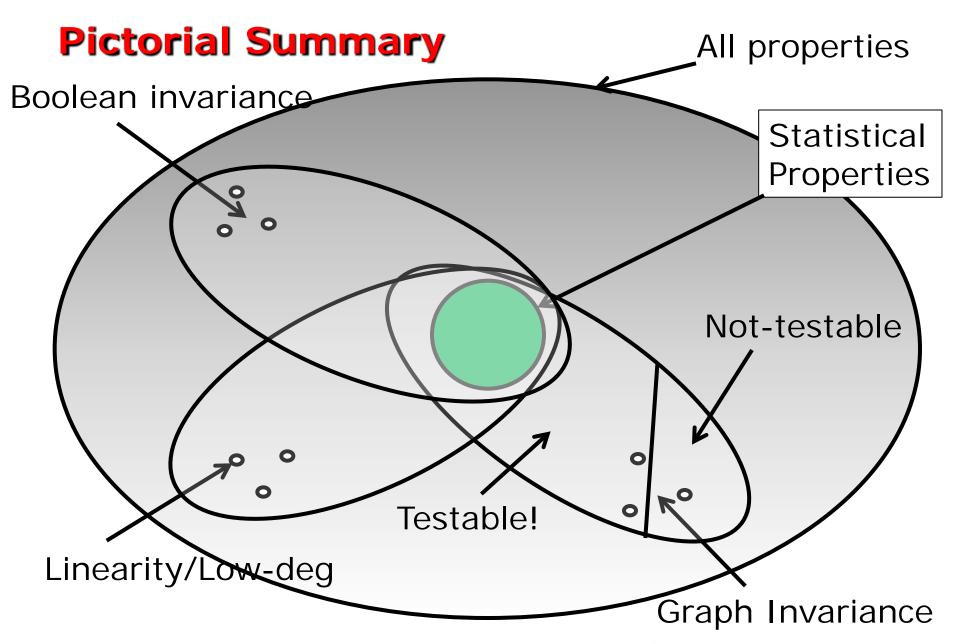


Some (introspective) questions

- What is qualitatively novel about linearity testing relative to classical statistics?
- Why are the mathematical underpinnings of different themes so different?
- Why is there no analog of "graph property testing" (broad class of properties, totally classified wrt testability) in algebraic world?

Invariance?

- Property P <u>u</u> {f : D → R}
- Property P invariant under permutation (function)
 ½ D → D, if
 f ≥ P ⇒ f o ¼ ≥ P
- Property P invariant under group G if 8 ¼ ≥ G, P is invariant under ¼
- Observation: Different property tests unified/separated by invariance class.



Invariances (contd.)

Some examples:

- Classical statistics: Invariant under all permutations.
- Graph properties: Invariant under vertex renaming.
- Boolean properties: Invariant under variable renaming.
- Matrix properties: Invariant under mult. by invertible matrix.
- Algebraic Properties = ?

Goals:

- Possibly generalize specific results.
- Get characterizations within each class?
- In algebraic case, get new (useful) codes?

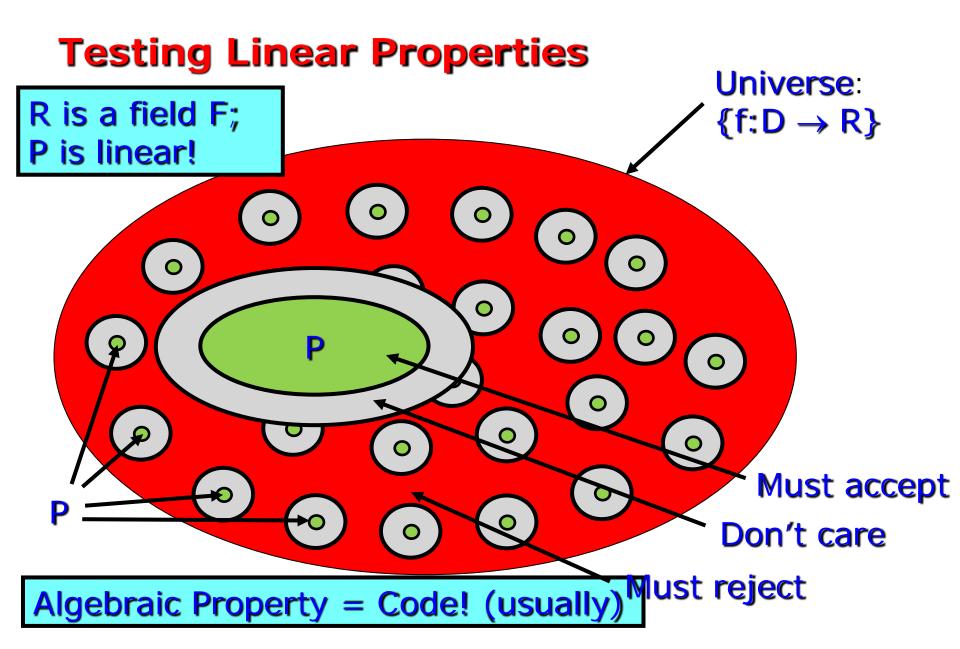
Abstracting Linearity/Low-degree tests

Affine Invariance:

- Domain = Big field (GF(2ⁿ)) or vector space over small field (GF(2)ⁿ).
- Property invariant under affine transformations of domain $(x \mapsto A.x + b)$

Linearity:

- Range = small field (GF(2))
- Property = vector space over range.



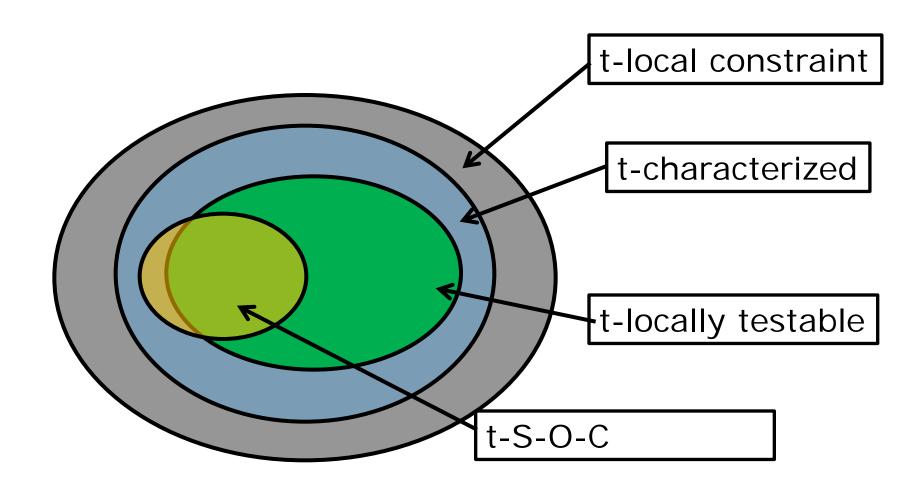
Why study affine-invariance?

- Common abstraction of properties studied in [BLR], [RS], [ALMSS], [AKKLR], [KR], [KL], [JPRZ].
 - (Variations on low-degree polynomials)
- Hopes
 - Unify existing proofs
 - Classify/characterize testability
 - Find new testable codes (w. novel parameters)
- Rest of the talk: Brief summary of findings

Basic terminology

- Local Constraint:
 - Example: f(1) + f(2) = f(3).
 - Necessary for testing <u>Linear Properties</u> [BHR]
- Local Characterization:
 - Example: $\emptyset x$, y, $f(x) + f(y) = f(x+y) \Leftrightarrow f \notin P$
 - Aka: LDPC code, k-CNF property etc.
 - Necessary for <u>affine-invariant</u> linear properties.
- Single-orbit characterization:
 - One linear constraint + implications by affineinvariance.
 - Feature in all previous algebraic properties.

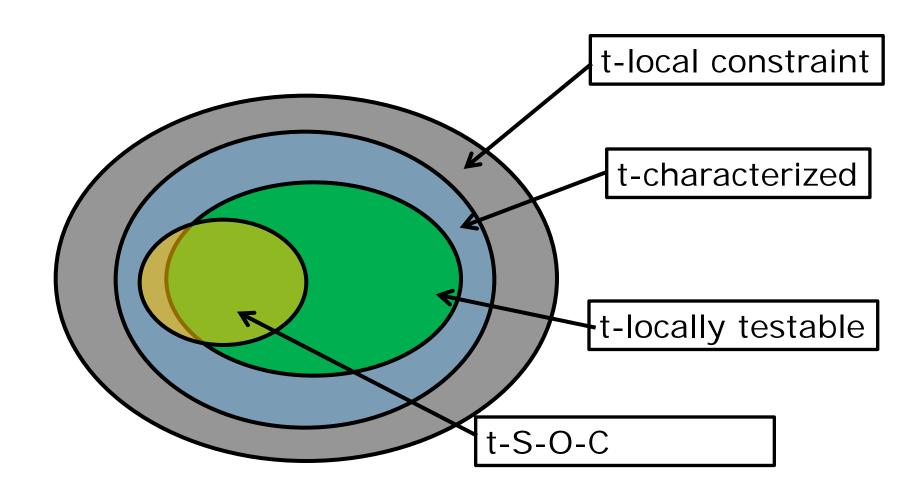
Affine-invariance & testability



State of the art in 2007

[AKKLR]: t-constraint = t'-testable, for all linear affine-invariant properties?

Affine-invariance & testability



Some results

■ [Kaufman+S.′07]: Single-orbit ⇒ Testable.

Next few slides: the Proof

Proof: t-S-O-C ⇒ t-testable

- Property P (t-S-O-C) given by ℚ₁,...,ℚ; V ≥ F^t
- $P = \{f \mid f(A(@_1)) \dots f(A(@_t)) \ge V, \emptyset \text{ affine } A:K^n \rightarrow K^n\}$
- Rej(f) = Prob_A [$f(A(@_1))$... $f(A(@_t))$ not in V]
- Wish to show: If Rej(f) < 1/t³, then δ(f,P) = O(Rej(f)).

Proof: BLR Analog

- Rej(f) = $Pr_{x,y}$ [f(x) + f(y) ≠ f(x+y)] < $\frac{1}{2}$
- Define g(x) = majority_y {Vote_x(y)}, where Vote_x(y) = f(x+y) - f(y).
- Step 0: Show δ(f,g) small
- Step 1: 8 x, Pr_{y,z} [Vote_x(y) ≠ Vote_x(z)] small.
- Step 2: Use above to show g is well-defined and a homomorphism.

Proof: BLR Analysis of Step 1

■ Why is f(x+y) - f(y) = f(x+z) - f(z), usually?

?	f(z)	- f(x+z)	
f(y)	0	-f(y)	——
- f(x+y)	-f(z)	f(x+y+z)	—
		1	1

Proof: Generalization

- $g(x) = \beta \text{ that maximizes, over A s.t. } A(@_1) = x,$ $Pr_A [\beta, f(A(@_2), ..., f(A(@_1)) \ge V]$
- Step 0: δ(f,g) small.
- Vote_x(A) = β s.t. β , f(A(\mathbb{R}_2))...f(A(\mathbb{R}_t)) \ge V (if such β exists)
- Step 2: Use above to show g & P.

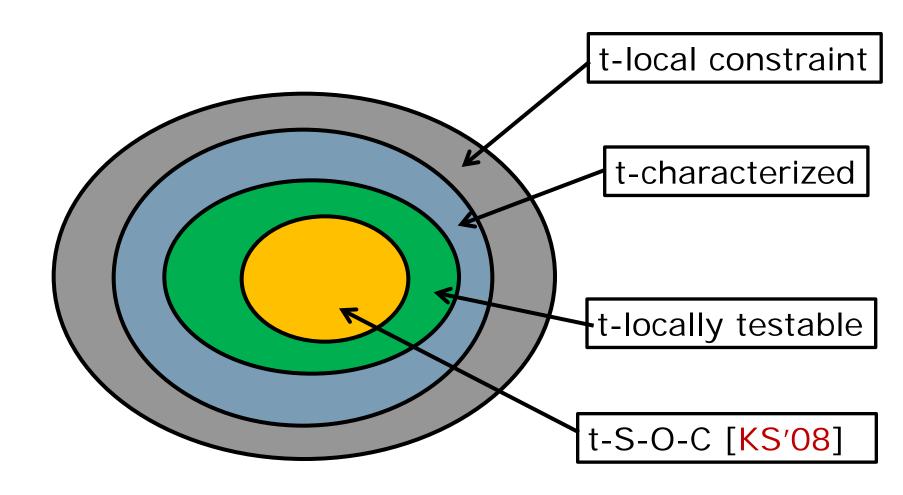
Say $A(\mathbb{R}_1)$... $A(\mathbb{R}_n)$ independent; **Proof: Matrix Magic?** rest dependent No Choice X Random Doesn't Matter! B(®4)

February 22, 2012

Some results

■ [Kaufman+S.′07]: Single-orbit ⇒ Testable.

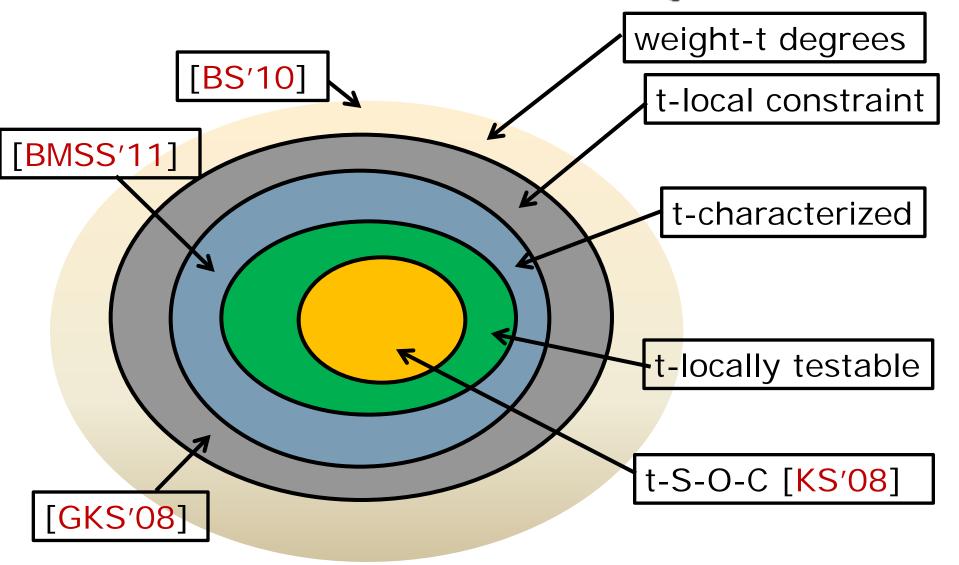
Affine-invariance & testability



Some results

- [Kaufman+S.′07]: Single-orbit ⇒ Testable.
 - Unifies known algebraic testing results.
 - Converts testability to purely algebraic terms.
 - Yields "Constraints = Char. = Testability" for vector spaces over <u>small fields</u>.
 - Left open: Domain = <u>Big field</u>.
 - Many "non-polynomial" testable properties
- [GKS'08]: Over big fields, Constraint ≠ Char.
- [BMSS'11]: Over big fields, Char ≠ Testability.
- [BGMSS'11]: Many questions/conjectures outlining a possible characterization of affineinvariant properties.

Affine-invariance & testability



State of knowledge over big fields

- All known testable properties are S-O-C.
- If |K| = |Fⁿ|, then the class of degree d n-variate polynomials is (|F|d+1)- S-O-C over K.
- [Kaufman-Lovett] If P ⊆ {K → F_p} has only |K|^c members, then P is t(c,p)-S-O-C.
- Sums, Intersections, and "Lifts" of S-O-C properties are S-O-C.

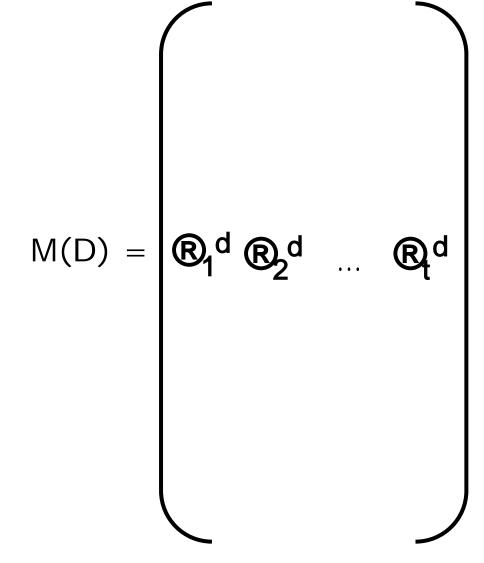
Quest in lower bound

- Proposition: For every affine-invariant property P, there exists a set of degrees D s.t.
 - P = {polynomials supported on monomials in D}
- Quest: Given degree set D (shadow-closed, shiftclosed) prove it has no S-O-C.
- Equivalently: Prove there are no

$$\lambda_1 \dots \lambda_t \in F$$
, $\mathfrak{B}_1 \dots \mathfrak{B}_t \in K$ such that

- $\sum_{i=1}^{t} \lambda_i \otimes_i^{d} \neq 0$ for every minimal $d \notin D$.

Pictorially



Is there a vector (, 1, ..., t) in its right kernel?

Can try to prove "NO" by proving matrix has full rank.

Unfortunately, few techniques to prove non-square matrix has high rank.

Structure of Degree sets

- Let D = degree set (P).
- D Shift closed: Range = F_q and $d \in D \Rightarrow q.d \in D$.
- D Shadow closed: Let p = char(q) and d in D. Then every e in p-shadow of d is also in D.
 - e in p-shadow of d if every digit in base p expansion is smaller.

Non-testable Property - 1

- AKKLR (Alon, Kaufman, Krivelevich, Litsyn, Ron) Conjecture:
 - If a linear property is 2-transitive and has a klocal constraint then it is testable.
 - [GKS'08]: For every k, there exists affineinvariant property with 8-local constraint that is not k-locally testable.
 - Range = GF(2); Domain = GF(2ⁿ)
 - P = Fam(Shift($\{0,1\} \cup \{1+2,1+2^2,...,1+2^k\}$)).

Proof (based on [BMSS'11])

- F = GF(2); $K = GF(2^n)$;
- $P_k = Fam(Shift({0,1} \cup {1 + 2^i \mid i \in {1,...,k}}))$

Let
$$M_i = \begin{bmatrix} \mathbb{R}_1^2 & \mathbb{R}_2^2 & \dots & \mathbb{R}_k^2 \end{bmatrix}$$

$$\mathbb{R}_1^{2^i} & \mathbb{R}_2^{2^i} & \dots & \mathbb{R}_k^{2^i} \end{bmatrix}$$

- If $Ker(M_i) = Ker(M_{i+1})$, then $Ker(M_{i+2}) = Ker(M_i)$
- $Ker(M_{k+1})$ = would accept all functions in P_{k+1}
- So Ker(M_i) must go down at each step, implying Rank(M_{i+1}) > Rank(M_i).

Stronger Counterexample

- GKS counterexample:
 - Takes AKKLR question too literally;
 - Of course, a non-locally-characterizable property can not be locally tested.
- Weaker conjecture:
 - Every k-locally characterized affine-invariant (2-transitive) property is locally testable.
 - Alas, not true: [BMSS]

[BMSS] CounterExample

Recall:

- Every known locally characterized property was locally testable
- Every known locally testable property is S-O-C.
- Need a locally characterized property which is (provably) not S-O-C.
- Idea:
 - Start with sparse family P_i.
 - Lift it to get Q_i (still S-O-C).
 - Take intersection of superconstantly many such properties. $Q = \bigcap_i Q_i$

Example: Sums of S-O-C properties

- Suppose $D_1 = Deg(P_1)$ and $D_2 = Deg(P_2)$
- Then $Deg(P_1 + P_2) = D_1 \cup D_2$.
- Suppose S-O-C of P_1 is C_1 : $f(a_1) + ... + f(a_k) = 0$; and S-O-C of P_2 is C_2 : $f(b_1) + ... + f(b_k) = 0$.
- Then every $g \in P_1 + P_2$ satisfies:

$$\sum_{i,j} g(a_i b_j) = 0$$

- Doesn't yield S-O-C, but applied to random constraints in orbit(C₁), orbit(C₂) does!
 - Proof uses $wt(Deg(P_1)) \le k$.

Hopes

- Get a complete characterization of locally testable affine-invariant properties.
- Use codes of (polynomially large?) locality to build better LTCs/PCPs?
 - In particular move from "domain = vector space" to "domain = field".
- Codes invariant under other groups?
 - [KaufmanWigderson], [KaufmanLubotzky]
 - Yield symmetric LDPC codes, but not yet LTCs.
- More broadly: Apply lens of invariance more broadly to property testing.

Thank You!