Efficient Semantic Communication & Compatible Beliefs

Madhu Sudan Microsoft, New England

Based on joint works with: Oded Goldreich (Weizmann) and Brendan Juba (Harvard)

03/21/2012

CISS: Beliefs in Communication

Part I: Background on Semantic Communication

03/21/2012

CISS: Beliefs in Communication

Semantic Communication: Motivation

First era of communication: Reliable Wires

- Essentially done: wires are very reliable; performance can be enhanced (maybe) quantitatively but not qualitatively.
- Can we get endpoints to also be reliable?
 - Modern systems have "smart" endpoints.
 - Smart implies capability.
 - Smart implies diversity.
 - But diversity implies (potential) misunderstanding.
- Semantic Communication [Goldreich, Juba+S '10]

Detect/Correct Misunderstanding.

Semantic Communication: Model - I

- General Model: Two "smart" interacting agents: User and Server; User wishes to accomplish some Goal, and Server is trying to help User.
- Interacting agents?

■ Agent: State x Inputs → New State x Outputs

Semantic Communication: Model - II

 Uncertainty about the receiver: (User doesn't know server; vice versa).

03/21/2012

Semantic Communication: Model - IIIa

Goal-oriented communication:

- User attempting to reach some goal.
- How to model this?
- Classical approaches:
 - Some function of state of user, or some function of transcript of interaction etc.
 - Fails in "semantic/uncertainty" setting.
 - Our [GJS] approach: Introduce a (hypothetical) third agent.

Semantic Communication: Model - IIIb

- Referee
 - Poses tasks to user.
 - Judges success.

Referee/Environment

- Generic Goal specified by (R, B, Ŭ, Š)
 - R = Referee (just another agent)
 - B = Boolean Function determining if the state evolution of the referee reflects successful achievement of goal.
 - Ŭ,Š = Class of users/servers.
 - (All finitely specified)
- Which goals can be achieved universally?

Basic Definitions: Helpfulness, Universality, Sensing

What makes a server helpful?

- S is G-helpful, if there exists a user who can achieve goal (efficiently) for every starting state of S.
- Universality:
 - User U is universal if it achieves G with every G-helpful server.
- Sensing?
 - Roughly, Goal G can be sensed if there exists an efficient algorithm that scan use (with their inputs) to see if Referee will accept.

Principal Thesis and Theorem

- Thesis: Every Goal of communication captured in our model (by appropriate choice of (R, B, Ŭ, Š))
- Theorem: Goal is universally achievable if and only if there exists a sensing function (for "oneshot" goals).

Proof + Insights

- Positive results by enumeration.
- Negative? Mostly by definition.

Insights:

- Servers should know how to be "interrupted". (How else can they function independent of complexity of their own state?)
- Short "interrupt" signal helps.
- Goals should be "sense"ible.

Part II: Beliefs & Compatibility

03/21/2012

CISS: Beliefs in Communication

Motivation

- Why does natural (human) communication differ so much from designed communication?
 - Languages are ambiguous
 - They violate their own grammatical rules
 - They are needlessly redundant at times, and noisily compressed at other times?
- Can we use information theory to explain such phenomena (departures from information theory)?
 - Use fact that natural communication deals with uncertainty about server.

Does Semantic Communication help?

Pros:

Does deal with uncertainty about servers.

Cons:

- Seems quite inefficient (user is enumerating all servers?).
- Seems to throw away all "knowledge" about server (that might yield efficiency).
- Is universality really a goal? Is it not at odds with "use of knowledge"

Beliefs in Semantic Communication

- Addition to the model, to include beliefs of user and server.
- Each server and user has associated belief.
- Belief of Server $S = D_S = Distribution on Users$
- Belief of User $U = D_U = D$ istribution on Servers
- Compatibility?

03/21/2012

CISS: Beliefs in Communication

Compatibility of Beliefs

- For user U, Consider the distribution \overline{D}_U on users obtained as follows:
 - Sample Server S' from distribution D_U
 - Sample user U' from distribution $D_{S'}$
- Compatibility of user U with server S:
 - Measured by "proximity" of \overline{D}_U with D_S
 - Our choice: U is α -compatible with S if

$$1 - \frac{1}{2} |\overline{D}_U - D_S|_1 \ge \alpha$$

Server Performance?

- What does it mean that server has a belief about users? How is it reflected in server's actions?
- Performance of server S (roughly) for goal G
 - $= \operatorname{Perf}_{G}(S)$
 - = Expected time that user U chosen from distribution D_s takes to achieve goal G.
- Well-designed server should be "broad-minded" i.e., efficient against a broad distribution of users.

03/21/2012

Universality of Users under Beliefs

Universal User U now has beliefs on servers.

- Can expect user to do well not only on servers in the support of its beliefs, but a potentially broader set: namely servers with compatible beliefs.
- Theorem [Juba, S '11]: ∀U, ∃ a universal user U' with same beliefs as U, whose time to achieve goal G with server S is ⁰⁽¹⁾/_{α(U,S)} Perf_G(S), provided the goal allows universal users.

Consequences/Conclusions

- Universality of communication is not at odds with efficiency.
- Efficiency comes with compatibility of communicating players.
- Universality takes care of possibility of misunderstanding, at an affordable price.

Thank You

03/21/2012

CISS: Beliefs in Communication