Compression under uncertain priors

Madhu Sudan Microsoft, New England

Based on joint works with: Adam Kalai (MSR), Sanjeev Khanna (U.Penn) and Brendan Juba (Harvard)

03/22/2012

CISS: Compression w. Uncertain Priors

1 of 12

Motivation: Human Communication

- Human communication (dictated by languages, grammars) very different.
 - Grammar: Rules, often violated.
 - Dictionary: Often multiple meanings to a word.
 - Redundant: But not as in any predefined way (not an error-correcting code).
- Theory?
 - Information theory?
 - Linguistics? (Universal grammars etc.)?

Behavioral aspects of natural communication

- (Vast) Implicit context.
- Sender sends increasingly long messages to receiver till receiver "gets" (the meaning of) the message.
- Sender may use feedback from receiver if available; or estimates receiver's knowledge if not.
- Language provides sequence of (increasingly) long ways to represent a message.
- Question: What is the benefit of choosing short/long messages?

Model:

- Reason to choose short messages: Compression.
 Channel is still a scarce resource; still want to use optimally.
- Reason to choose long messages (when short ones are available): Reducing ambiguity.
 - Sender unsure of receiver's prior (context).
 - Sender wishes to ensure receiver gets the message, no matter what its prior (within reason).

Model

- Wish to design encoding/decoding schemes (E/D) to be used as follows:
 - Sender has distribution P on M = {1,2,...,N}
 - Receiver has distribution Q on M = {1,2,...,N}
 - Sender gets $X \in M$
 - Sends E(P,X) to receiver.
 - Receiver receives Y = E(P,X)
 - Decodes to $\hat{X} = D(Q, Y)$
 - Want: X = \hat{X} (provided P,Q close), ■ While minimizing $Exp_{X \leftarrow P}$ |E(P,X)|

03/22/2012

Contrast with some previous models

- Universal compression?
 - Doesn't apply: P,Q are not finitely specified.
 - Don't have a sequence of samples from P; just one!
- K-L divergence?
 - Measures inefficiency of compressing for Q if real distribution is P.
 - But assumes encoding/decoding according to same distribution Q.
- Semantic Communication:
 - Uncertainty of sender/receiver; but no special goal.

03/22/2012 CISS: Compression w. Uncertain Priors

Closeness of distributions:

• P is α -close to Q if for all $X \in M$,

$$\frac{1}{\alpha} \leq \frac{P(X)}{Q(X)} \leq \alpha$$

• P α -close to Q $\Rightarrow D(P||Q), D(Q||P) \le \log \alpha$.

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and X is independent of R.
 - Y = E(P,X,R)
 - $\hat{X} = \mathsf{D}(\mathsf{Q},\mathsf{Y},\mathsf{R})$

• Want $\forall X$, $\Pr_R[\hat{X} = X] \ge 1 - \epsilon$

03/22/2012

Solution (variant of Arith. Coding)

Use R to define sequences

- **R**₁ [1], R_1 [2], R_1 [3], ...
- **•** R_2 [1], R_2 [2], R_2 [3], ...

— ...

• R_N [1], R_N [2], R_N [3], ...

• $E_{\alpha}(P, x, R) = R_{x}[1 \dots L]$, where *L* chosen s.t. $\forall z \neq x$ Either $R_{z}[1 \dots L] \neq R_{x}[1 \dots L]$ Or $P(z) < \frac{P(x)}{\alpha^{2}}$ • $D_{\alpha}(Q, x, R) = \hat{x} \circ t \hat{x} \max Q(\hat{x}) \operatorname{cmans} \hat{x} \in [z|R_{\alpha}[1 \dots L] = \alpha$

• $D_{\alpha}(Q, y, R) = \hat{x} s. t. \hat{x} \max Q(\hat{x}) \operatorname{among} \hat{x} \in \{z | R_z[1 \dots L] = y\}$

03/22/2012

Performance

- Obviously decoding always correct.
- Easy exercise:
 - $\operatorname{Exp}_X [E(P,X)] = H(P) + 2 \log \alpha$
- Limits:
 - No scheme can achieve $(1 \epsilon) \cdot [H(P) + \log \alpha]$
 - Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the α ((estimated) gap in context), larger the encoding length.
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" is a convenient starting point for discussion
 - Dictionaries do have more structure.
 - But have plenty of entropy too.
 - Still ... should try to do without it.

03/22/2012

Future work?

- Upcoming:
 - Some partial derandomization
 - [w. E. Haramaty and G.Ranade]
 - Neat connections to fractional graph chromaticity and the Knesser conjecture/Lovasz theorem.
- Needed:
 - Better understanding of forces on language.
 - Information-theoretic
 - Computational
 - Evolutionary

03/22/2012

Thank You

03/22/2012

CISS: Compression w. Uncertain Priors

13 of 12