Communication amid Uncertainty

Madhu Sudan

Microsoft, Cambridge, USA

Based on:

- Universal Semantic Communication Juba & S. (STOC 2008)
- Goal-Oriented Communication Goldreich, Juba & S. (JACM 2012)
- Compression without a common prior ... –

Kalai, Khanna, Juba & S. (ICS 2011)

Efficient Semantic Communication with Compatible Beliefs –

Juba & S. (ICS 2011)

09/04/2012

Uncertainty in Communication?

- Always has been a central problem:
 - But usually focusses on uncertainty introduced by the channel
 - Standard Solution:
 - Use error-correcting codes
 - Significantly:
 - Design Encoder/Decoder jointly
 - Deploy Encoder at Sender, Decoder at Receiver

09/04/2012

New Era, New Challenges:

Interacting entities not jointly designed.

- Can't design encoder+decoder jointly.
- Can they be build independently?
- Can we have a theory about such?
 - Where we prove that they will work?

Hopefully:

- YES
- And the world of practice will adopt principles.

Example 1

Intersystem communication?

- Google+ ↔ Facebook friendship ?
- Skype ↔ Facetime chat?
- Problem:
 - When designing one system, it is <u>uncertain</u> what the other's design is (or will be in the future)!

Example 2

Heterogenous data?

- Amazon-marketplace spends N programmer hours converting data from mom-n-pop store catalogs to uniform searchable format.
- Healthcare analysts spend enormous #hours unifying data from multiple sources.
- Problem: Interface of software with data:
 - Challenge:
 - Software designer uncertain of data format.
 - Data designer uncertain of software.

Example 3

Archiving data

- Physical libraries have survived for 100s of years.
- Digital books have survived for five years.
- Can we be sure they will survive for the next five hundred?
- Problem: Uncertainty of the future.
 - What systems will prevail?
 - Why aren't software systems ever constant?

Modelling uncertainty

Nature of uncertainty

- A_i's, B_j's differ in beliefs, but can be centrally programmed/designed.
 - [Juba,Kalai,Khanna,S.'11] : Compression in this context has graceful degradation as beliefs diverge.
- A_i 's, B_j 's differ in behavior:
 - Nothing to design any more.
 - Best hope: Can highlight certain A_i 's (universalists) that can interact successfully with many B_j 's
 - [Juba,S'08; Goldreich,J,S'12; J,S'11]: "All is not lost, if we keep goal of communication in mind"
 - Details don't fit in margin ...

II: Compression under uncertain beliefs/priors

09/04/2012

Motivation: Human Communication

- Human communication (dictated by languages, grammars) very different.
 - Grammar: Rules, often violated.
 - Dictionary: Often multiple meanings to a word.
 - Redundant: But not as in any predefined way (not an error-correcting code).
 - Our thesis: Emerges from uncertainty:
 - Sender of message uncertain about receiver's background/context/prior.
 - Will try to explain in the context of Redundancy

Behavioral aspects of natural communication

- (Vast) Implicit context.
- Sender sends increasingly long messages to receiver till receiver "gets" (the meaning of) the message.
- Sender may use feedback from receiver if available; or estimates receiver's knowledge if not.
- Language provides sequence of (increasingly) long ways to represent a message.
- Question: What is the benefit of choosing short/long messages?

Some reasoning

Reason to choose short messages: Compression.
 Channel is still a scarce resource; still want to use optimally.

- Reason to choose long messages (when short ones are available): Reducing ambiguity.
 - Sender unsure of receiver's prior (context). ("uncertainty")
 - Sender wishes to ensure receiver gets the message, no matter what its prior (within reason).
 - But doesn't want to abandon prior either.

09/04/2012

A teaser:

- Suppose you and I have a ranking of N players.
 Rankings π, σ : [N] → [N]
- Further suppose we know the rankings are close.
 ∀ i ∈ [N]: |π(i) − σ(i)| ≤ 2.
- You want to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits do I need to send to you (noninteractively).
 - *0*(1)?
 - $O(\log N)$?
 - $O(\log \log \log N)$?

Model

- Wish to design encoding/decoding schemes (E/D) to be used as follows:
 - Sender has distribution P on M = {1,2,...,N}
 - Receiver has distribution Q on M = {1,2,...,N}
 - Sender gets $X \in M$
 - Sends E(P,X) to receiver.
 - Receiver receives Y = E(P,X)
 - Decodes to $\hat{X} = D(Q, Y)$
 - Want: $X = \hat{X}$ (provided P,Q close),

• While minimizing $Exp_{X\leftarrow P} |E(P,X)|$

09/04/2012

Contrast with some previous models

- Universal compression?
 - Doesn't apply: P,Q are not finitely specified.
 - Don't have a sequence of samples from P; just one!
- K-L divergence?
 - Measures inefficiency of compressing for Q if real distribution is P.
 - But assumes encoding/decoding according to same distribution Q.
- Semantic Communication:
 - Uncertainty of sender/receiver; but no special goal.

09/04/2012 ITW 2012: Uncertainty in Communication

Closeness of distributions:

• P is α -close to Q if for all $X \in M$,

$$\frac{1}{\alpha} \leq \frac{P(X)}{Q(X)} \leq \alpha$$

• $P \alpha$ -close to $Q \Rightarrow D(P||Q), D(Q||P) \le \log \alpha$.

09/04/2012

ITW 2012: Uncertainty in Communication

16 of 30

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and X is independent of R.
 - Y = E(P, X, R)
 - $\widehat{X} = \mathsf{D}(\mathsf{Q},\mathsf{Y},\mathsf{R})$

• Want
$$\forall X$$
, $\Pr_R[\hat{X} = X] \ge 1 - \epsilon$

09/04/2012

Solution (variant of Arith. Coding)

Use R to define sequences

- **R**₁ [1], R_1 [2], R_1 [3], ...
- **a** R_2 [1], R_2 [2], R_2 [3], ...

— ...

• R_N [1], R_N [2], R_N [3], ...

• $E_{\alpha}(P, x, R) = R_{x}[1 \dots L]$, where *L* chosen s.t. $\forall z \neq x$ Either $R_{z}[1 \dots L] \neq R_{x}[1 \dots L]$ Or $P(z) < \frac{P(x)}{\alpha^{2}}$

• $D_{\alpha}(Q, y, R) = \operatorname{argmax}_{\hat{x}} \{Q(\hat{x})\} \operatorname{among} \hat{x} \in \{z \mid R_{z}[1 \dots L] = y\}$

09/04/2012

Performance

- Obviously decoding always correct.
- Easy exercise:
 - $\operatorname{Exp}_X [E(P,X)] = H(P) + 2 \log \alpha$
- Limits:
 - No scheme can achieve $(1 \epsilon) \cdot [H(P) + \log \alpha]$
 - Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the α ((estimated) gap in context), larger the encoding length.
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" is a convenient starting point for discussion
 - Dictionaries do have more structure.
 - But have plenty of entropy too.
 - Still ... should try to do without it.

09/04/2012

III: Uncertainty on Action: Goal-Oriented Communication

09/04/2012

Back to meaning

What if sender is sending instructions?

- Sender and receiver are uncertain about each other's "instruction ↔ bits" association?
- Can we ensure receiver decodes the right instructions?
- Translation of bits to instructions?
 - Well studied in language/computer science.
 - (Many) "Complete" languages/codebooks exist.
 - Each translates bits to meaning.
 - All equivalent (upto "Kolmogorov constant")
 - But not same.

09/04/2012

Goal of communication

- Easy negative result:
 - Due to plethora of languages/codebooks): In finite time, can't guarantee "receiver understands instructions."
 - Is this bad?
 - If receiver can not distinguish correct instructions from incorrect ones, why should it try to do so?
- Goals of communication:
 - Communication is not an end in itself, it a means to achieving some end.
 - Hopefully receiver wishes to achieve a goal and using information from sender to achieve this goal.
 - Semantic communication:
 - Help communication achieve its goal.
 - Use progress towards goal to understand meaning.

09/04/2012

Utility of Communication?

The lens of computational complexity:

- To prove some resource is useful:
 - Step 1: Identify hardest problems one can solve without the resource.
 - Step 2: Show presence of resource can help solve even harder problems.
- Classical resources:
 - CPU speed, Memory, Non-determinism, Randomness ...
- In our case:
 - Communication in presence of understanding.
 - Communication w/o understanding.

Computation as a goal [Juba & S. '08]

Model: Simple user talking to powerful server.

Class of problems user can solve on its own:

~ probabilistic polynomial time (P).

Class of problems user can solve with perfect understanding of server:

~ Any problem. (Even uncomputable!)

Class of problems user can solve without understanding of server:

~ Polynomial space.

- Roughly: If you are solving problems and can verify solutions, then this helps. If you have a solution, you are done. If not, you've found some error in communication.
- Moral: Communication helps, even with misunderstanding, but misunderstanding introduces limits.

09/04/2012

Summarizing results of [GJS 2012]

- But not all goals are computational.
 - We use communication mostly for (remote) control.
 - Intellectual/informational goals are rare(r).
- Modelling general goals, in the presence of misunderstanding:
 - Non-trivial, but can be done.
 - Results extend those from computational setting:
 - Goals can be achieved if user can sense progress towards goal, servers are "forgiving" and "helpful"

Useful lessons

User/Server can be designed separately.

- Each should attempt to model its "uncertainty" about the other.
- Each should plan for uncertainty:
 - Server: By assuming some short "interrupt" sequence.
 - User: By always checking its progress.

09/04/2012

Future goals

- Broadly:
 - Information-theoretic study of human communication, with uncertainty as an ingredient.
 - Should exploit natural restrictions of humans:
 - Limited ability to learn/infer/decode.
 - Limited bandwidth.
 - Conversely, use human interactions to create alternate paradigms for "designed communications.
 - Place semantics on solid foundations.

09/04/2012

Future?

Understand human communication?

- How does it evolve
- What are influencing factors?
 - (My guesses): Compression, Computation, Survival of fittest.
- Extend to other "distributed design" settings.
- Architecture/Program for preserving Data?
 Blend safe assumptions, with "likely-to-befast" performance.

09/04/2012

Thank You!

09/04/2012

ITW 2012: Uncertainty in Communication

30 of 30