(Deterministic) Communication amid Uncertainty

Madhu Sudan

Microsoft, New England

Based on joint works with: (1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (Harvard) and (2) Elad Haramaty (Technion)

11/26/2012MSR-I: Deterministic Communication Amid Uncertainty1 of 24

Classical Communication

- The Shannon setting
 - Alice gets $m \in [N]$ chosen from distribution P
 - Sends some compression y = E(m) to Bob.
 - Bob computes $\widehat{m} = D(y)$
 - (with knowledge of Q = P).
 - Hope $m = \widehat{m}$.
- Classical Uncertainty: $y \approx E(m)$
- Today's talk: Bob knows $Q \approx P$.

Outline

- Part 1: Motivation
- Part 2: Formalism
- Part 3: Randomized Solution
- Part 4: Issues with Randomized Solution
- Part 5: Deterministic Issues.

Motivation: Human Communication

- Human communication vs. Designed communication:
 - Human comm. dictated by languages, grammars ...
 - Grammar: Rules, often violated.
 - Dictionary: 3 multiple meanings to word.
 - Redundant: But ≠ error-correcting code.
- Theory for human communication?
 - Information theory?
 - Linguistics? (Universal grammars etc.)?

Behavioral aspects of natural communication

- (Vast) Implicit context.
- Sender sends increasingly long messages to receiver till receiver "gets" (the meaning of) the message.
 - Where do the options come from?
 - Comes from language/dictionary but how/why?
- Sender may use feedback from receiver if available; or estimates receiver's knowledge if not.
 - How does estimation influence message.

Model:

- Reason to choose short messages: Compression.
 - Channel is still a scarce resource; still want to use optimally.
- Reason to choose long messages (when short ones are available): Reducing ambiguity.
 - Sender unsure of receiver's prior (context).
 - Sender wishes to ensure receiver gets the message, no matter what its prior (within reason).

Back to Problem

- Design encoding/decoding schemes (E/D) so that
 - Sender has distribution P on [N]
 - Receiver has distribution Q on [N]
 - Sender gets $m \in [N]$
 - Sends E(P, m) to receiver.
 - Receiver receives y = E(P,m)
 - Decodes to $\widehat{m} = D(Q, y)$
 - Want: $m = \hat{m}$ (provided P, Q close), ■ While minimizing $Exp_{m \leftarrow P} |E(P, m)|$

Contrast with some previous models

- Universal compression?
 - Doesn't apply: P,Q are not finitely specified.
 - Don't have a sequence of samples from P; just one!
- K-L divergence?
 - Measures inefficiency of compressing for Q if real distribution is P.
 - But assumes encoding/decoding according to same distribution Q.
- Semantic Communication:
 - Uncertainty of sender/receiver; but no special goal.

Closeness of distributions:

• P is Δ -close to Q if for all $m \in [N]$, $|\log P(m) - \log Q(m)| \leq \Delta$

■ $P \Delta$ -close to $Q \Rightarrow D(P||Q), D(Q||P) \le \Delta$ (symmetrized, "worst-case" KL-divergence)

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and P,Q,m are independent of R.
 - $\bullet y = E(P, m, R)$
 - $\widehat{m} = D(Q, y, R)$

• Want
$$\forall m, \Pr_{R}[\widehat{m} = m] \ge 1 - \epsilon$$

Solution (variant of Arith. Coding)

- Use R to define sequences
 - $\blacksquare \ R_1 \ [1], R_1 \ [2], R_1 \ [3], \dots$
 - **•** R_2 [1], R_2 [2], R_2 [3], ...

• • • •

• R_N [1], R_N [2], R_N [3], ...

• $E_{\Delta}(P, m, R) = R_m[1 \dots L]$, where *L* chosen s.t. $\forall z \neq m$ Either $R_z[1 \dots L] \neq R_m[1 \dots L]$ Or $\log P(z) < \log P(m) - 2\Delta$

• $D_{\Delta}(Q, y, R) = \widehat{m}$ s.t. \widehat{m} max. $Q(\widehat{m})$ among $\widehat{m} \in \{z | R_z[1 ... L] = y\}$

Performance

Obviously decoding always correct.

• Easy exercise:

•
$$\operatorname{Exp}_m [E(P,m)] = H(P) + 2\Delta$$

• $(H(P) \equiv \sum_m P(m) \log_2 \frac{1}{P(m)}$ "binary entropy")

Limits:

- No scheme can achieve $(1 \epsilon) \cdot [H(P) + \Delta]$
- Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the ∆ ((estimated) gap in context), larger the encoding length.
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" is a convenient starting point for discussion
 - Dictionaries do have more structure.
 - But have plenty of entropy too.
 - Still ... should try to do without it.

Deterministic Compression?

- Randomness fundamental to solution.
 - Needs *R* independent of *P*, *Q* to work.
- Can there be a deterministic solution?
 - Technically: Hard to come up with single scheme that compresses consistently for all (P,Q).
 - Conceptually: Nicer to know "dictionary" and context can be interdependent.

Challenging special case

- Alice has permutation π on [N]
 - i.e., π 1-1 function mapping $[N] \rightarrow [N]$
- Bob has permutation σ
- Know both are close:

• $\forall m \in [N], |\pi^{-1}(m) - \sigma^{-1}(m)| \le \ell \text{ (say } \ell = 2\text{)}$

- Alice and Bob know i (say i = 1).
 - Alice wishes to communicate $m = \pi(i)$ to Bob.
- Can we do this with few bits?
 - Say O(1) bits if i = 1, $\ell = 2$.

Model as a graph coloring problem

• Consider family of graphs $U_{N,\ell}$:

- Vertices = permutations on [N]
- Edges = close permutations with distinct messages. (two potential Alices).

• Central question: What is $\chi(U_{N,\ell})$?

Main Results [w. Elad Haramaty]

- Claim: Compression length for toy problem $\in \left[\log \chi(U_{N,\ell}), \log \chi(U_{N,2\ell})\right]$
- Thm 1: $\chi(U_{N,\ell}) \leq \ell^{O(\ell \log^* N)}$
 - $\log^{(i)} N \equiv \log \log \dots N \text{ (}i \text{ times)}$
 - $\log^* N \equiv \min \{i \mid \log^{(i)} N \le 1\}.$
- Thm 2: 3 uncertain comm. schemes with
 - 1. $\operatorname{Exp}_{m}[|E(P,m)|] \leq O(H(P) + \Delta + \log \log N)$ (0-error).
 - 1. $\operatorname{Exp}_{m}[|E(P,m)|] \leq \ell^{O(\epsilon^{-1}(H(P)+\Delta+\log^{*}N))} (\epsilon \operatorname{-error}).$

Rest of the talk: Graph coloring MSR-I: Deterministic Communication Amid Uncertainty

Restricted Uncertainty Graphs

- Will look at $U_{N,\ell,k}$
 - Vertices: restrictions of permutations to first k coordinates.
 - Edges: $\pi' \leftrightarrow \sigma'$

 $\Leftrightarrow \exists \ \pi \ \text{extending} \ \pi' \ \text{and} \ \sigma \ \text{extending} \ \sigma' \ \text{with} \ \pi \leftrightarrow \sigma$

Homomorphisms

- *G* homomorphic to *H* (*G* \rightarrow *H*) if $\exists \phi: V(G) \rightarrow V(H)$ s.t. $u \leftrightarrow_G v \Rightarrow \phi(u) \leftrightarrow_H \phi(v)$
- Homorphisms?
 - *G* is *k*-colorable \Leftrightarrow *G* \rightarrow *K*_{*k*}
 - $G \to H$ and $H \to L \Rightarrow G \to L$
- Homomorphisms and Uncertainty graphs.

$$U_{N,\ell} = U_{N,\ell,N} \to U_{N,\ell,N-1} \to \dots \to U_{N,\ell,\ell+1}$$

Suffices to upper bound $\chi(U_{N,\ell,k})$

Chromatic number of $U_{N,\ell,\ell+1}$

• For
$$f: [N] \to [2\ell]$$
, Let
 $I_f = \{ \pi \mid f(\pi_1) = 1, f(\pi_i) \neq 1, \forall i \in [2\ell] - \{1\} \}$

Claim: $\forall f, I_f$ is an independent set of $U_{N,\ell,\ell+1}$

• Claim:
$$\forall \pi$$
, $\Pr_f \left[\pi \in I_f \right] \ge \frac{1}{4\ell}$

• Corollary: $\chi(U_{N,\ell,\ell+1}) \le O(\ell^2 \log N)$

Better upper bounds:

Say
$$\phi: G \to H$$

 $d_{\phi}(u) \equiv |\{\phi(v) \mid v \leftrightarrow_{G} u\}|$
 $d_{\phi} \equiv \max_{u} \{d_{\phi}(u)\}$

Lemma:

 $\chi(G) \le O(d_{\phi}^2 \log \chi(H))$

For
$$\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$$

$$d_{\phi_k} = \ell^{O(k)}$$

11/26/2012 MSR-I: Deterministic Communication Amid Uncertainty

Better upper bounds:

•
$$d_{\phi} \equiv \max_{u} \{ |\{\phi(v)|v \leftrightarrow_{G} u\}| \}$$

- Lemma: $\chi(G) \le O(d_{\phi}^2 \log \chi(H))$
- For $\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$, $d_{\phi_k} \leq \ell^{O(k)}$
- Corollary: $\chi(U_{N,\ell,k}) \leq \ell^{O(k)} \log^{(\frac{k}{\ell})} N$
- Aside: Can show: $\chi(U_{N,\ell,k}) \ge \log^{\Omega(\frac{k}{\ell})} N$
 - Implies can't expect simple derandomization of the randomized compression scheme.

Future work?

- Open Questions:
 - Is $\chi(U_{N,\ell}) = O_\ell(1)$?
 - Can we compress arbitrary distributions to $O(H(P) + \Delta) ? O(H(P) + \Delta + \log^* N)?$ or even $O(H(P) + \Delta + \log \log \log N)?$
- On conceptual side:
 - Better mathematical understanding of forces on language.
 - Information-theoretic
 - Computational
 - Evolutionary

Thank You

11/26/2012

MSR-I: Deterministic Communication Amid Uncertainty

24 of 24