(Deterministic) Communication amid Uncertainty

Madhu Sudan

Microsoft, New England

Based on joint works with:

(1) Adam Kalai (MSR), Sanjeev Khanna (U.Penn), Brendan Juba (Harvard) and (2) Elad Haramaty (Technion)

Classical Communication

- The Shannon setting
 - Alice gets $m \in [N]$ chosen from distribution P
 - Sends some compression y = E(m) to Bob.
 - Bob computes $\widehat{m} = D(y)$
 - (with knowledge of Q = P).
 - Hope $m = \widehat{m}$.
- Classical Uncertainty: $y \approx E(m)$
- Today's talk: Bob knows $Q \approx P$.

Outline

- Part 1: Motivation
- Part 2: Formalism
- Part 3: Randomized Solution
- Part 4: Issues with Randomized Solution
- Part 5: Deterministic Issues.

Motivation: Human Communication

- Human communication (dictated by languages, grammars) very different from Shannon setting.
 - Grammar: Rules, often violated.
 - Dictionary: Often multiple meanings to a word.
 - Redundant: But not as in any predefined way (not an error-correcting code).
- Theory?
 - Information theory?
 - Linguistics? (Universal grammars etc.)?

Behavioral aspects of natural communication

- (Vast) Implicit context.
- Sender sends increasingly long messages to receiver till receiver "gets" (the meaning of) the message.
 - Where do the options come from?
- Sender may use feedback from receiver if available; or estimates receiver's knowledge if not.
 - How does estimation influence message.
- Language provides sequence of (increasingly) long ways to represent a message.
 - How? Why? What features are good/bad.

Model:

- Reason to choose short messages: Compression.
 - Channel is still a scarce resource; still want to use optimally.
- Reason to choose long messages (when short ones are available): Reducing ambiguity.
 - Sender unsure of receiver's prior (context).
 - Sender wishes to ensure receiver gets the message, no matter what its prior (within reason).

Back to Problem

- Design encoding/decoding schemes (E/D) so that
 - Sender has distribution P on [N]
 - Receiver has distribution Q on [N]
 - Sender gets $m \in [N]$
 - Sends E(P, m) to receiver.
 - Receiver receives y = E(P, m)
 - Decodes to $\widehat{m} = D(Q, y)$
 - Want: $m = \hat{m}$ (provided P, Q close),
 - While minimizing $Exp_{m\leftarrow P}$ |E(P,m)|

Contrast with some previous models

- Universal compression?
 - Doesn't apply: P,Q are not finitely specified.
 - Don't have a sequence of samples from P; just one!
- K-L divergence?
 - Measures inefficiency of compressing for Q if real distribution is P.
 - But assumes encoding/decoding according to same distribution Q.
- Semantic Communication:
 - Uncertainty of sender/receiver; but no special goal.

Closeness of distributions:

■ P is Δ-close to Q if for all $m \in [N]$, $|\log P(m) - \log Q(m)| \le \Delta$

■ P Δ -close to Q \Rightarrow $D(P||Q), D(Q||P) \le \Delta$ (symmetrized, "worst-case" KL-divergence)

11/20/2012

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and P,Q,m are independent of R.
 - y = E(P, m, R)
 - $\widehat{m} = D(Q, y, R)$
- Want $\forall m$, $\Pr_{R}[\widehat{m} = m] \ge 1 \epsilon$

Solution (variant of Arith. Coding)

- Use R to define sequences
 - R_1 [1], R_1 [2], R_1 [3], ...
 - R_2 [1], R_2 [2], R_2 [3], ...
 - ____
 - R_N [1], R_N [2], R_N [3],
- $E_{\Lambda}(P, m, R) = R_m[1 ... L]$, where L chosen s.t. $\forall z \neq m$ Either $R_z[1...L] \neq R_m[1...L]$ Or $\log P(z) < \log P(m) - 2\Delta$
- $D_{\Lambda}(Q, y, R) = \widehat{m} \text{ s. t. } \widehat{m} \text{ max. } Q(\widehat{m}) \text{ among } \widehat{m} \in \{z | R_z[1 \dots L] = y\}$

11/20/2012

Performance

- Obviously decoding always correct.
- Easy exercise:
 - $Exp_m [E(P,m)] = H(P) + 2 \Delta$
 - $(H(P) \equiv \sum_{m} P(m) \log_2 \frac{1}{P(m)}$ "binary entropy")
- Limits:
 - No scheme can achieve $(1 \epsilon) \cdot [H(P) + \Delta]$
 - Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the △ ((estimated) gap in context), larger the encoding length.
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" is a convenient starting point for discussion
 - Dictionaries do have more structure.
 - But have plenty of entropy too.
 - Still ... should try to do without it.

Deterministic Compression?

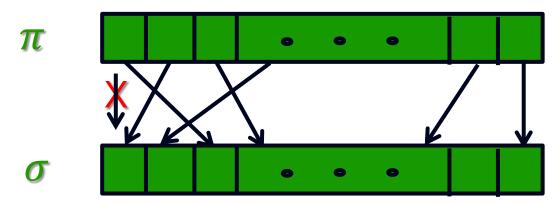
- Randomness fundamental to solution.
 - Needs R independent of P, Q to work.
- Can there be a deterministic solution?
 - Technically: Hard to come up with single scheme that compresses consistently for all (P,Q).
 - Conceptually: Nicer to know "dictionary" and context can be interdependent.

Challenging special case

- Alice has permutation π on [N]
 - i.e., π 1-1 function mapping $[N] \rightarrow [N]$
- Bob has permutation σ
- Know both are close:
 - $\forall m \in [N], |\pi^{-1}(m) \sigma^{-1}(m)| \le \ell \text{ (say } \ell = 2)$
- Alice and Bob know i (say i = 1).
 - Alice wishes to communicate $m = \pi(i)$ to Bob.
- Can we do this with few bits?
 - Say O(1) bits if i = 1, $\ell = 2$.

Model as a graph coloring problem

- Consider family of graphs $U_{N,\ell}$:
 - Vertices = permutations on [N]
 - Edges = close permutations with distinct messages. (two potential Alices).



• Central question: What is $\chi(U_{N,\ell})$?

Main Results [w. Elad Haramaty]

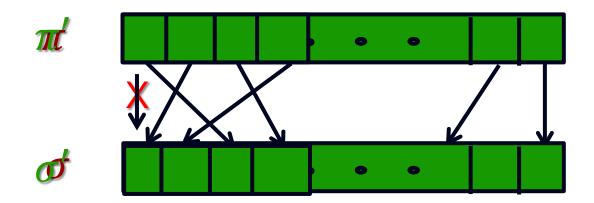
Claim: Compression length for toy problem

$$\in [\log \chi(U_{N,\ell}), \log \chi(U_{N,2\ell})]$$

- Thm 1: $\chi(U_{N,\ell}) \leq \ell^{O(\log^* N)}$
 - $\log^{(i)} N \equiv \log \log ... N$ (*i* times)
 - $\log^* N \equiv \min \{i \mid \log^{(i)} N \leq 1\}.$
- Thm 2: 3 uncertain comm, schemes with
 - $\text{Exp}_m[|E(P,m)|] \le O(H(P) + \log \log N) \text{ (0-error)}.$
 - $\text{Exp}_m[|E(P,m)|] \le \ell^{O(\epsilon^{-1}H(P) + \log^* N)} (\epsilon \text{ -error}).$
 - Rest of the talk: Graph coloring

Restricted Uncertainty Graphs

- Will look at $U_{N,\ell,k}$
 - Vertices: restrictions of permutations to first
 k coordinates.
 - Edges: $\pi' \leftrightarrow \sigma'$
 - $\Leftrightarrow \exists \pi \text{ extending } \pi' \text{ and } \sigma \text{ extending } \sigma' \text{ with } \pi \leftrightarrow \sigma$



Homomorphisms

- *G* homomorphic to *H* ($G \rightarrow H$) if $\exists \phi: V(G) \rightarrow V(H)$ s. t. $u \leftrightarrow_G v \Rightarrow \phi(u) \leftrightarrow_H \phi(v)$
- Homorphisms?
 - G is k-colorable $\Leftrightarrow G \to K_k$
 - $G \rightarrow H$ and $H \rightarrow L \Rightarrow G \rightarrow L$
- Homomorphisms and Uncertainty graphs.
 - $U_{N,\ell} = U_{N,\ell,N} \to U_{N,\ell,N-1} \to \cdots \to U_{N,\ell,\ell+1}$
- Suffices to upper bound $\chi(U_{N,\ell,k})$

Chromatic number of $U_{N,\ell,\ell+1}$

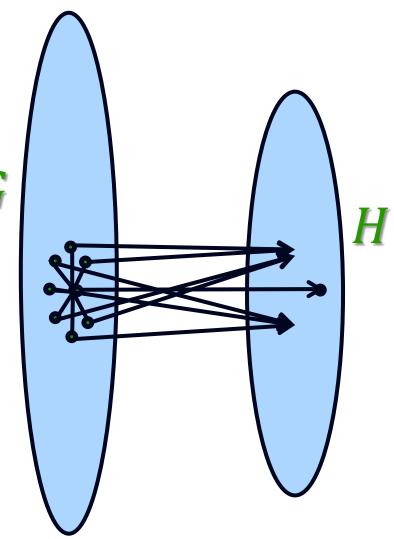
- For $f: [N] \to [2\ell]$, Let $I_f = \{ \pi \mid f(\pi_1) = 1, \ f(\pi_i) \neq 1, \ \forall \ i \in [2\ell] \{1\} \}$
- Claim: ∀f, I_f is an independent set of U_{N,ℓ,ℓ+1}
- Claim: $\forall \pi$, $\Pr_f \left[\pi \in I_f \right] \ge \frac{1}{4\ell}$
- Corollary: $\chi(U_{N,\ell,\ell+1}) \le O(\ell^2 \log N)$

Better upper bounds:

- Say $\phi: G \to H$
 - $d_{\phi}(u) \equiv |\{\phi(v) \mid v \leftrightarrow_{G} u\}|$ $d_{\phi} \equiv \max_{u} \{d_{\phi}(u)\}$
- Lemma:

$$\chi(G) \le O(d_{\phi}^2 \log \chi(H))$$

For $\phi_k \colon U_{N,\ell,k} o U_{N,\ell,k-\ell}$ $d_{\phi_k} = \ell^{O(k)}$



Better upper bounds:

- $d_{\phi} \equiv \max_{u} \{ |\{\phi(v)|v \leftrightarrow_{G} u\}| \}$
- Lemma: $\chi(G) \le O(d_{\phi}^2 \log \chi(H))$
- For $\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$, $d_{\phi_k} \le \ell^{O(k)}$
- Corollary: $\chi(U_{N,\ell,k}) \le \ell^{O(k)} \log^{(\frac{k}{\ell})} N$
- Aside: Can show: $\chi(U_{N,\ell,k}) \ge \log^{\Omega(\frac{k}{\ell})} N$
 - Implies can't expect simple derandomization of the randomized compression scheme.

Future work?

- Open Questions:
 - Is $\chi(U_{N,\ell}) = O_{\ell}(1)$?
 - Can we compress arbitrary distributions to $O(H(P) + \Delta)$? $O(H(P) + \Delta + \log^* N)$? or even $O(H(P) + \Delta + \log \log \log N)$?
- On conceptual side:
 - Better mathematical understanding of forces on language.
 - Information-theoretic
 - Computational
 - Evolutionary

Thank You