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Main Result

e Background: Almost surely, random d-regular
graph on n vertices has independent set of

size (1 + 0(1)) . cg *nforcy = 2 logd.

e Can you find such a large independent set?
— Greedy finds one of half this size.

 Our Theorem: “Local algorithms” can not. In
fact they fall short by a constant factor.
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Definition: Local Algorithms

* Informally: Local algorithms
— Input = Communication network.

— Wish to use local communication to compute
some property of input.

— In our case — large independent set in graph.
— Allowed to use randomness, generated locally.
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Formally

 (Randomized) Decision Algorithm:
— f(u,G,w) € {0,1}: Determinesif u € I.
e W is a weighting, say in [0,1], on vertices
* Correctness:
—Vu,v,G,Ws.t.u eq v,
f(u,G,w) = 0or f(v,G,w) = 0.
* Locality:

— fiisr-local if f(u, G,w) = f(v, H, X) whenever r-local
weighted neighborhood around u in (G, W) and v in
(H, x) are identical.
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Locality # Locality

* Locality in distributed algorithms

— Usually algorithms try to compute some function of
input graph, on the graph itself.

— Algorithm uses data available topologically locally.
— Leads to our model

* Locality a la Codes/Property Testing
— Locality simply refers to number of queries to input.
— More general model.
— We can’t/don’t deal with it.
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Motivations for our work

1. Paucity of “complexity” results for random

graphs. Major exceptions:

e  Rossman: AC°/Monotone complexity of planted
clique.

* Feige-Krauthgamer/Meka-Wigderson: SDP relaxations.

2. Physicists explanation of complexity
e Clustering/Shattering explain inability of algorithms.

3. Graph Limit theory

* Local characteristics of (random) graphs predict global
properties (nearly).
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Motivations (contd.)

e Specific conjecture [Hatami-Lovasz-Szegedy]:
As r = oo, r-local algorithms should find
independent sets of cardinality c;(1 — o(1)) n.

e Refuted by our theorem.
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Proof

* Partl:

— A clustering phenomenon for independent sets in
random graphs [Inspired by Coja-Oglan].

* Partll:
— Locality = Continuity = —(Clustering).

Both parts simple.
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Clustering Phenomena

* Generally:

— When you look at “near-optimal” solutions, then
they are very structured.

— = topology of solutions highly disconnected (in
Hamming space.

* |n our context

— Consider graph on independent sets (of size =
can)withl & Jif[IA]]| < e-n.

— Highly disconnected?
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Clustering Theorem

* Theorem:Vd,30 <60 <1 <cys.t.:

— Almost surely over G, VI, ] of size = c4n,

INJ|
e (0,7)
* Proof:

— Compute expected number of independent sets
with forbidden intersection and note it is < 1.

— Second moment proves concentration.

* Implies Clustering.
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Locality = —(Clustering)

e Main ldea:

— Fix r-local function f, that usually produces
independent sets of size = ¢c; - n

— Sample weights twice: W, and then X ; p-
correlatedly.

—Let] = f(G,w) and ] = f(G, x).
— Prove:

* whp, |I[,|/| = ¢4 -1

* whp, [INn]| = B(p) -n

* Ips.t. f(p) € (O,7)
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Size of Ind. Set

* Claim: Size of independent set produced by
local algorithms is concentrated.

— Lleta = a(f) = Ey[f(u, Ty, w)]
(where T ; = infinite tree of degree d)
— W.p. 1-0(1), size of ind. set produced = «a - n.
* Proof:

— Most neighborhoods are trees = Expectation.

— Most neighborhoods are disjoint = Chebychev.
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p-correlated distributions

* Pickw,y € [0,1]"n, independently.

* Let X; = w; w.p. p and y; otherwise,
independently for each i.

* Let B(p) = Ez[f (w, Ta, W) A f(u, Ty, X)]
* Asin previous argument:

—E[lInJll = B(p) -n

— |I N J| concentrated around expectation.
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Continuity of 5 (p)

* Fix W, y, and consider
Pr[f(u,Tg,w) A f(u, Ty, x)]

* Above expression is some polynomial in p, of
degree at most d”.

* In particular, it is continuous as function of p.

* = B(p)=Expectation over w, y is also
continuous.

» Suffices to show [£(0), (1) n (6,1) # ©.
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Continuity (contd.)

° lg(p) — Ew,f[f(uJ TdJW) A f(u, Tde)]

* B(1) = a(f) = ¢4

* B(0) = a? = c§

* Follows from calculations (also naturally) that

- [B(0), (D] Nn(0,7) # @

e Conclude:
—whp, |I],|J]| = ¢4 - n
—whp, [In][ = B(p) -n
—3dp s.t. B(p) € (6,71)
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Conclusions

e “Clustering” is an obstacle?
* Answer:

— At least to local algorithmes.

— Local algorithms behave continuously, forcing non-
clustering of solutions.

* Open questions:
— Barrier to local algorithms in general sense?
— To other complexity classes?
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Thank You
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