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Main Result

• Background: Almost surely, random 𝑑-regular 
graph on 𝑛 vertices has independent set of 

size 1 + 𝑜 1 ⋅ 𝑐𝑑 ⋅ 𝑛 for 𝑐𝑑 =
2

𝑑
log 𝑑. 

• Can you find such a large independent set?

– Greedy finds one of half this size.

• Our Theorem: “Local algorithms” can not. In 
fact they fall short by a constant factor.
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Definition: Local Algorithms

• Informally: Local algorithms

– Input = Communication network.

– Wish to use local communication to compute 
some property of input.

– In our case – large independent set in graph.

– Allowed to use randomness, generated locally.
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Formally

• (Randomized) Decision Algorithm: 
– 𝑓 𝑢, 𝐺, 𝑤 ∈ {0,1}: Determines if 𝑢 ∈ 𝐼.

• 𝑤 is a weighting, say in 0,1 , on vertices

• Correctness: 
– ∀𝑢, 𝑣, 𝐺, 𝑤 s.t. 𝑢 ↔𝐺 𝑣,

𝑓(𝑢, 𝐺, 𝑤) = 0 or 𝑓(𝑣, 𝐺, 𝑤) = 0.

• Locality:
– 𝑓 is 𝑟-local if 𝑓 𝑢, 𝐺, 𝑤 = 𝑓(𝑣, 𝐻,  𝑥) whenever 𝑟-local 

weighted neighborhood around 𝑢 in (𝐺, 𝑤) and 𝑣 in 
(𝐻,  𝑥) are identical. 
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Locality ≠ Locality

• Locality in distributed algorithms

– Usually algorithms try to compute some function of 
input graph, on the graph itself.

– Algorithm uses data available topologically locally.

– Leads to our model

• Locality a la Codes/Property Testing

– Locality simply refers to number of queries to input. 

– More general model. 

– We can’t/don’t deal with it.
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Motivations for our work

1. Paucity of “complexity” results for random 
graphs. Major exceptions:
• Rossman: 𝐴𝐶0/Monotone complexity of planted 

clique.

• Feige-Krauthgamer/Meka-Wigderson: SDP relaxations.

2. Physicists explanation of complexity
• Clustering/Shattering explain inability of algorithms.

3. Graph Limit theory
• Local characteristics of (random) graphs predict global 

properties (nearly).
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Motivations (contd.)

• Specific conjecture [Hatami-Lovasz-Szegedy]: 
As 𝑟 → ∞, 𝑟-local algorithms should find 
independent sets of cardinality 𝑐𝑑(1 − 𝑜(1)) 𝑛. 

• Refuted by our theorem.
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Proof

• Part I: 

– A clustering phenomenon for independent sets in 
random graphs [Inspired by Coja-Oglan].

• Part II: 

– Locality ⇒ Continuity ⇒ ¬(Clustering).

Both parts simple.
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Clustering Phenomena

• Generally: 

– When you look at “near-optimal” solutions, then 
they are very structured.

– ⇒ topology of solutions highly disconnected (in 
Hamming space.

• In our context

– Consider graph on independent sets (of size ≈
𝑐𝑑𝑛) with 𝐼 ↔ 𝐽 if 𝐼 Δ 𝐽 ≤ 𝜖 ⋅ 𝑛.

– Highly disconnected?
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Clustering Theorem

• Theorem: ∀𝑑, ∃0 < 𝜃 < 𝜏 < 𝑐𝑑 s.t.:

– Almost surely over 𝐺, ∀𝐼, 𝐽 of size ≈ 𝑐𝑑𝑛,

𝐼∩𝐽

𝑛
∉ (𝜃, 𝜏)

• Proof: 

– Compute expected number of independent sets 
with forbidden intersection and note it is ≪ 1.

– Second moment proves concentration.

• Implies Clustering.
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Locality ⇒ ¬(Clustering)

• Main Idea:
– Fix 𝑟-local function 𝑓, that usually produces 

independent sets of size ≈ 𝑐𝑑 ⋅ 𝑛

– Sample weights twice: 𝑤, and then  𝑥 ; 𝑝-
correlatedly.

– Let 𝐼 = 𝑓(𝐺,𝑤) and 𝐽 = 𝑓(𝐺,  𝑥).

– Prove:
• whp, 𝐼 , 𝐽 ≈ 𝑐𝑑 ⋅ 𝑛

• whp, 𝐼 ∩ 𝐽 ≈ 𝛽 𝑝 ⋅ 𝑛

• ∃𝑝 s.t. 𝛽 𝑝 ∈ (𝜃, 𝜏)
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Size of Ind. Set

• Claim: Size of independent set produced by 
local algorithms is concentrated.

– Let 𝛼 = 𝛼 𝑓 = 𝔼𝑤[f u, 𝕋𝑑 , 𝑤 ]

(where 𝕋𝑑 = infinite tree of degree 𝑑)

– W.p. 1-o(1), size of ind. set produced ≈ 𝛼 ⋅ 𝑛.

• Proof:

– Most neighborhoods are trees ⇒ Expectation.

– Most neighborhoods are disjoint ⇒ Chebychev.
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𝑝-correlated distributions

• Pick 𝑤,  𝑦 ∈ [0,1]^𝑛, independently.

• Let  𝑥𝑖 = 𝑤𝑖 w.p. 𝑝 and  𝑦𝑖 otherwise, 
independently for each 𝑖.

• Let 𝛽 𝑝 = 𝔼𝑤,  𝑥[𝑓 𝑢, 𝕋𝑑 , 𝑤 ∧ 𝑓 𝑢, 𝕋𝑑 ,  𝑥 ]

• As in previous argument:

– 𝔼 𝐼 ∩ 𝐽 ≈ 𝛽 𝑝 ⋅ 𝑛

– 𝐼 ∩ 𝐽 concentrated around expectation.
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Continuity of 𝛽(𝑝)

• Fix 𝑤,  𝑦, and consider 
Pr[𝑓 𝑢, 𝕋𝑑 , 𝑤 ∧ 𝑓 𝑢, 𝕋𝑑 ,  𝑥 ]

• Above expression is some polynomial in 𝑝, of 
degree at most 𝑑𝑟 .

• In particular, it is continuous as function of 𝑝.

• ⇒ 𝛽(𝑝)=Expectation over 𝑤,  𝑦 is also 
continuous.

• Suffices to show 𝛽 0 , 𝛽 1 ∩ 𝜃, 𝜏 ≠ ∅.
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Continuity (contd.)

• 𝛽 𝑝 = 𝔼𝑤,  𝑥[𝑓 𝑢, 𝕋𝑑 , 𝑤 ∧ 𝑓 𝑢, 𝕋𝑑 ,  𝑥 ]

• 𝛽 1 = 𝛼 𝑓 ≈ 𝑐𝑑

• 𝛽 0 = 𝛼2 ≈ 𝑐𝑑
2

• Follows from calculations (also naturally) that

– 𝛽 0 , 𝛽 1 ∩ 𝜃, 𝜏 ≠ ∅

• Conclude:
– whp, 𝐼 , 𝐽 ≈ 𝑐𝑑 ⋅ 𝑛

– whp, 𝐼 ∩ 𝐽 ≈ 𝛽 𝑝 ⋅ 𝑛

– ∃𝑝 s.t. 𝛽 𝑝 ∈ (𝜃, 𝜏)
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Conclusions

• “Clustering” is an obstacle?

• Answer:

– At least to local algorithms.

– Local algorithms behave continuously, forcing non-
clustering of solutions.

• Open questions:

– Barrier to local algorithms in general sense?

– To other complexity classes?
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Thank You
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