

Microsoft Research

Theories of Communication & Computing Madhu Sudan (MSR New England)

Theory of Computing

Turing (1936) \rightarrow von Neumann (50s?)

Finite state

control

tape

W head

- Clean model of "universal" computer.
- One computer, that can be programmed (to do any computational task!)
- Separation of computing elements (ALU/CPU/Finite state control) from memory (RAM, tape)
- Needs reliable memory & reliable communication to/from memory.

Theory of Communication

Shannon (1948)

• Clean architecture for reliable communication.

• Needs reliable encoder + decoder (two reliable computers).

Communication vs. Computing

- Deeply intertwined: Each needs the other!
- Theories & (till 1990s) technologies well-separated.
- Today technologies are coming together.
- Leads to a clash of the theories!

Clash of the Theories?

- Computing principle: Give user a programming language/operating system and let them modify device freely.
- Communication principle: Design encoder/decoder jointly. Devices at both endpoints should be designed jointly.
 - Do not let user program/alter their devices!

Consequences (without equations)

Option 2

Computing

Communication

Consequences in words

- Communicating computers are highly unstable and vulnerable.
 - They spend lots of time updating software.
 - Many are not programmable.
- Can computers communicate the way humans do?
- Long term issues:
 - What are the long term prospects of our data?
 - How will we preserve their meaning, when interpretation is changing?

A new theory?

New communication model Obasesitaintyo (abourti cattitproints)

Aspects to study

- Understanding human-human communication:
 - why is natural language so different?
 - E.g., why is the dictionary so redundant and so ambiguous?
 - Why are (grammatical) rules made to be broken?
- Semantic Communication.
 - How can computers detect when bits are being misunderstood?
 - How can they correct errors?
 - What does "understanding" mean anyway?

Human-Human Communication Role of dictionary? [Juba,Kalai,Khanna,S.]

- Dictionary: gives list of words representing a message
 - words appear against multiple messages
 - multiple words per message.
- How to decide which word to use? Context!
 - Encoding: Given message, use shortest unambiguous word in current context.
 - Decoding: Given word, use most likely message in current context among messages whose list includes uttered word.
- Context = ???. Probability distribution on messages!
 - P_i = Prob [message = M_i]

 $\begin{array}{l} M_1 \ = \ w_{11}, w_{12}, \dots \\ M_2 \ = \ w_{21}, w_{22}, \dots \\ M_3 \ = \ w_{31}, w_{32}, \dots \\ M_4 \ = \ w_{41}, w_{42}, \dots \\ \dots \end{array}$

Human Communication - 2 Role of dictionary? [JKKS]

 $\begin{array}{c|cccc} M_1 &=& w_{11}, w_{12}, \dots \\ M_2 &=& w_{21}, w_{22}, \dots \\ M_3 &=& w_{31}, w_{32}, \dots \\ M_4 &=& w_{41}, w_{42}, \dots \\ \dots \end{array}$

- Good (Ideal?) dictionary
 - Should compress messages to entropy of context: $H(P = \langle P_1, ..., P_N \rangle)$.
- Even better dictionary?
 - Should not assume context of sender/receiver identical!
 - Compression should work even if sender <u>uncertain</u> about receiver (or receivers' context).

Theorem [JKKS]: If dictionary is "random" then compression achieves message length $H(P) + \Delta$, if sender and receiver distributions are " Δ -close".

Meaning of Bits

- Meaning?
 - Bits ↔ Instructions (Algorithm/Computer Program)
 - Whither <u>uncertainty</u>?
 - Receiver may not know programming language of sender.
 - Uncertainty arises from diversity! Else intelligent Alice can adapt!
- Communicate meaning?
 - Can we send language first? Or a compiler?
 - Compile to which language?
 - Need to have common ground some common language first?
 - But humans don't seem to need this?

 B_2

Semantic Communication

[Goldreich+Juba+S., Juba+S.]

- Theorem 1: In sufficient diversity, can not communicate meaning!
 - Main issue: generically, can not detect misunderstanding.
 - If you can't detect misunderstanding, shouldn't be communicating.
- Why communicate at all?
 - Computer scientist: To get *useful* data.
 - Systems scientist: To exert remote control.
 - Economist: To gain strategic advantage.
 - Common theme: Communication must have a goal.
- Theorem 2: If we can sense progress towards the goal, then can learn meaning.
 - Main insight: Absence of progress towards goal signals misunderstanding.
- Warning: Learning of meaning can be "exponentially slow"

Conclusions

- For Practice:
 - Communication and computation can be bridged differently.
 - Computers can communicate, and maintain reliability, but we have to be explicit about goals of communication, and be able to sense progress in achieving such goal.
- For Theory:
 - Robust communication leads to new class of problems.
 - Rich opportunity to bring together Math, CS, Information Theory, Economics, while learning from linguists, philosophers and communication (media) scholars.

Thank You