Communication amid Uncertainty

Madhu Sudan

Microsoft, Cambridge, USA

Based on:

-Universal Semantic Communication – Juba & S. (STOC 2008)

-Goal-Oriented Communication – Goldreich, Juba & S. (JACM 2012)

-Compression without a common prior ... – Kalai, Khanna, Juba & S. (ICS 2011)

-Efficient Semantic Communication with Compatible Beliefs – Juba & S. (ICS 2011)

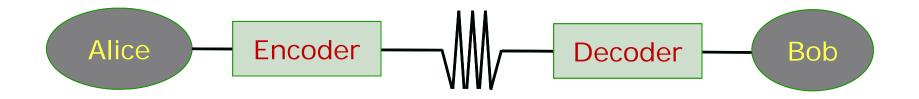
-Deterministic Compression with uncertain priors – Haramaty & S. (ITCS 2014)

Cornell: Uncertainty in Communication

Classical theory of communication

Shannon (1948)

Clean architecture for reliable communication.



- Remarkable mathematical discoveries: Prob. Method, Entropy, (Mutual) Information
- Needs reliable encoder + decoder (two reliable computers).

Uncertainty in Communication?

- Always has been a central problem:
 - But usually focusses on uncertainty introduced by the channel
 - Standard Solution:
 - Use error-correcting codes
 - Significantly:
 - Design Encoder/Decoder jointly
 - Deploy Encoder at Sender, Decoder at Receiver

New Era, New Challenges:

Interacting entities not jointly designed.

- Can't design encoder+decoder jointly.
- Can they be build independently?
- Can we have a theory about such?
 - Where we prove that they will work?

Hopefully:

- YES
- And the world of practice will adopt principles.

Example 1

- Intersystem communication?
 - Google+ ↔ Facebook friendship ?
 - Skype ↔ Facetime chat?
- Problem:
 - When designing one system, it is <u>uncertain</u> what the other's design is (or will be in the future)!

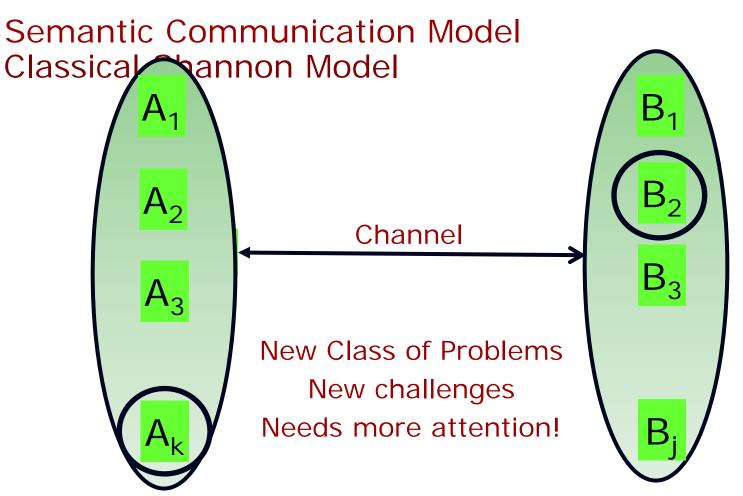
Example 2

- Heterogenous data?
 - Amazon-marketplace spends N programmer hours converting data from mom-n-pop store catalogs to uniform searchable format.
 - Healthcare analysts spend enormous #hours unifying data from multiple sources.
- Problem: Interface of software with data:
 - Challenge:
 - Software designer uncertain of data format.
 - Data designer uncertain of software.

Example 3

- Archiving data
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?
- Problem: Uncertainty of the future.
 - What systems will prevail?
 - Why aren't software systems ever constant?

Modelling uncertainty



Nature of uncertainty

- A_i's, B_j's differ in beliefs, but can be centrally programmed/designed.
 - [Juba,Kalai,Khanna,S.'11] : Compression in this context has graceful degradation as beliefs diverge.
 - [Haramaty,S'13]: Role of randomness in this context.
- A_i 's, B_j 's differ in behavior:
 - Nothing to design any more (behavior already fixed).
 - Best hope: Can identify certain A_i's (universalists) that can interact successfully with many B_j's. Can eliminate certain B_j's on the grounds of "limited tolerance".
 - [Juba,S'08; Goldreich,J,S'12; J,S'11]: "All is not lost, if we keep goal of communication in mind"
 - [Leshno,S'13]: "Communication is a Coordination Game"
 - Details don't fit in margin ...

II: Compression under uncertain beliefs/priors

10/31/2013

Cornell: Uncertainty in Communication

Motivation

- New era of challenges needs new solutions.
 - Most old solutions do not cope well with uncertainty.
 - The one exception?
 - Natural communication (Humans ↔ Humans)
- What are the rules for human communication?
 - "Grammar/Language"
 - What kind of needs are they serving?
 - What kind of results are they getting? (out of scope)
 - If we were to design systems serving such needs, what performance could they achieve?

Role of Dictionary (/Grammar/Language)

- Dictionary: maps words to meaning
 - Multiple words with same meaning
 - Multiple meanings to same word
- How to decide what word to use (encoding)?
- How to decide what a word means (decoding)?
 - Common answer: <u>Context</u>
- Really Dictionary specifies:
 - Encoding: context × meaning → word
 - Decoding: context × word → meaning
- Context implicit; encoding/decoding works even if context used not identical!

 $M_1 = w_{11}, w_{12}, \dots$

 $M_2 = w_{21}, w_{22}, \dots$

 $M_3 = w_{31}, w_{32}, \dots$

 $M_4 = w_{41}, w_{42}, \dots$

Context?

- In general complex notion ...
 - What does sender know/believe
 - What does receiver know/believe
 - Modifies as conversation progresses.
- Our abstraction:
 - Context = Probability distribution on potential "meanings".
 - Certainly part of what the context provides; and sufficient abstraction to highlight the problem.

The problem

- Wish to design encoding/decoding schemes (E/D) to be used as follows:
 - Sender has distribution P on $M = \{1, 2, ..., N\}$
 - Receiver has distribution Q on $M = \{1, 2, ..., N\}$
 - Sender gets $X \in M$
 - Sends E(P,X) to receiver.
 - Receiver receives Y = E(P, X)
 - Decodes to $\hat{X} = D(Q, Y)$
 - Want: $X = \hat{X}$ (provided P, Q close),

• While minimizing $Exp_{X\leftarrow P} |E(P,X)|$

Closeness of distributions:

• P is Δ -close to Q if for all $X \in M$,

$$\frac{1}{2^{\Delta}} \leq \frac{P(X)}{Q(X)} \leq 2^{\Delta}$$

$$P \text{ } \Delta \text{-close to } Q \qquad \Rightarrow \qquad D(P||Q), D(Q||P) \leq \Delta \quad .$$

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and X, P, Q independent of R.

$$\bullet Y = E(P, X, R)$$

 $\widehat{X} = D(Q, Y, R)$

• Want
$$\forall X$$
, $\Pr_R[\hat{X} = X] \ge 1 - \epsilon$

Solution (variant of Arith. Coding)

- Use R to define sequences
 - $\blacksquare \ R_1 \ [1], R_1 \ [2], R_1 \ [3], \dots$
 - $\blacksquare \ R_2 \ [1], R_2 \ [2], R_2 \ [3], \dots$

••••

• R_N [1], R_N [2], R_N [3], ...

• $E_{\Delta}(P, x, R) = R_{\chi}[1 \dots L]$, where *L* chosen s.t. $\forall z \neq x$ Either $R_{Z}[1 \dots L] \neq R_{\chi}[1 \dots L]$ Or $P(z) < \frac{P(x)}{A\Delta}$

• $D_{\Delta}(Q, y, R) = \operatorname{argmax}_{\hat{x}} \{Q(\hat{x})\} \operatorname{among} \hat{x} \in \{z \mid R_z[1 \dots L] = y\}$

Performance

Obviously decoding always correct.

- Easy exercise:
 - $\operatorname{Exp}_X [E(P,X)] = H(P) + 2\Delta$
- Limits:
 - No scheme can achieve $(1 \epsilon) \cdot [H(P) + \Delta]$
 - Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the ∆ ((estimated) gap in context), larger the encoding length.
 - Entropy is still a valid measure!
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" assumption
 - A convenient starting point for discussion
 - But is dictionary independent of context?
 - This is problematic.

III: Deterministic Communication Amid Uncertainty

10/31/2013

Cornell: Uncertainty in Communication

20 of 30

A challenging special case

- Say Alice and Bob have rankings of N players.
 - Rankings = bijections $\pi, \sigma : [N] \rightarrow [N]$
 - $\pi(i)$ = rank of *i*th player in Alice's ranking.
- Further suppose they know rankings are close.

• $\forall i \in [N]: |\pi(i) - \sigma(i)| \le 2.$

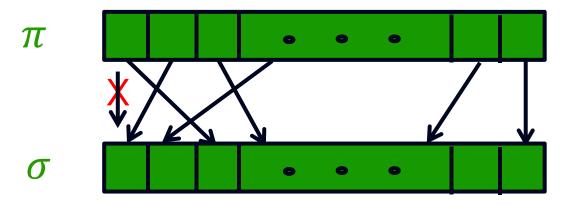
- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (noninteractively).
 - With shared randomness O(1)
 - Deterministically?

• O(1)? $O(\log N)$? $O(\log \log \log N)$?

Model as a graph coloring problem

• Consider family of graphs $U_{N,\ell}$:

- Vertices = permutations on [N]
- Edges = *l*-close permutations with distinct messages. (two potential Alices).



• Central question: What is $\chi(U_{N,\ell})$?

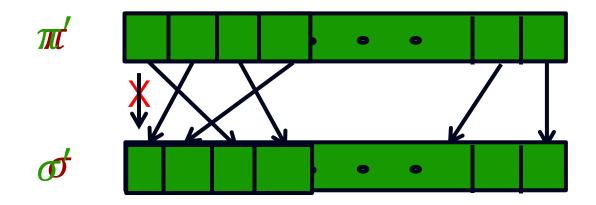
Main Results [w. Elad Haramaty]

- Claim: Compression length for toy problem $\in \left[\log \chi(U_{N,2}), \log \chi(U_{N,4})\right]$
- Thm 1: $\chi(U_{N,\ell}) \leq \ell^{O(\ell \log^* N)}$
 - $\log^{(i)} N \equiv \log \log \dots N \text{ (}i \text{ times)}$
 - $\log^* N \equiv \min \{i \mid \log^{(i)} N \le 1\}.$
- Thm 2: 3 uncertain comm. schemes with
 - 1. $\operatorname{Exp}_{m}[|E(P,m)|] \leq O(H(P) + \Delta + \log \log N)$ (0-error).
 - 1. $\operatorname{Exp}_{m}[|E(P,m)|] \leq \ell^{O(\epsilon^{-1}(H(P)+\Delta+\log^{*}N))} (\epsilon \operatorname{-error}).$

Restricted Uncertainty Graphs

- Will look at $U_{N,\ell,k}$
 - Vertices: restrictions of permutations to first k coordinates.
 - Edges: $\pi' \leftrightarrow \sigma'$

 $\Leftrightarrow \exists \ \pi \ \text{extending} \ \pi' \ \text{and} \ \sigma \ \text{extending} \ \sigma' \ \text{with} \ \pi \leftrightarrow \sigma$



Cornell: Uncertainty in Communication

Homomorphisms

- *G* homomorphic to *H* (*G* \rightarrow *H*) if $\exists \phi: V(G) \rightarrow V(H)$ s.t. $u \leftrightarrow_G v \Rightarrow \phi(u) \leftrightarrow_H \phi(v)$
- Homorphisms?
 - *G* is *k*-colorable \Leftrightarrow *G* \rightarrow *K*_{*k*}
 - $G \to H$ and $H \to L \Rightarrow G \to L$
- Homomorphisms and Uncertainty graphs.

$$U_{N,\ell} = U_{N,\ell,N} \to U_{N,\ell,N-1} \to \cdots \to U_{N,\ell,\ell+1}$$

Suffices to upper bound $\chi(U_{N,\ell,k})$

Chromatic number of $U_{N,\ell,\ell+1}$

• For
$$f: [N] \to [2\ell]$$
, Let
 $I_f = \{ \pi \mid f(\pi_1) = 1, f(\pi_i) \neq 1, \forall i \in [2\ell] - \{1\} \}$

Claim: $\forall f, I_f$ is an independent set of $U_{N,\ell,\ell+1}$

• Claim:
$$\forall \pi$$
, $\Pr_f \left[\pi \in I_f \right] \ge \frac{1}{4\ell}$

• Corollary: $\chi(U_{N,\ell,\ell+1}) \le O(\ell^2 \log N)$

Better upper bounds:

 $\sum u + C > U$

Say
$$\varphi: G \to H$$

$$d_{\phi}(u) \equiv |\{\phi(v) \mid v \leftrightarrow_{G} u\}|$$

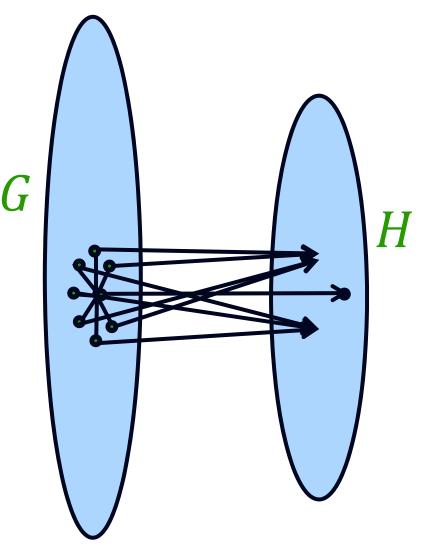
$$d_{\phi} \equiv \max_{u} \{d_{\phi}(u)\}$$

Lemma:

 $\chi(G) \leq O(d_\phi^2 \log \chi(H))$

For
$$\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$$

$$d_{\phi_k} = \ell^{O(k)}$$



Cornell: Uncertainty in Communication

Better upper bounds:

$$d_{\phi} \equiv \max_{u} \{ |\{\phi(v)|v \leftrightarrow_{G} u\}| \}$$

- Lemma: $\chi(G) \le O(d_{\phi}^2 \log \chi(H))$
- For $\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$, $d_{\phi_k} \leq \ell^{O(k)}$
- Corollary: $\chi(U_{N,\ell,k}) \leq \ell^{O(k)} \log^{\binom{k}{\ell}} N$
- Aside: Can show: $\chi(U_{N,\ell,k}) \ge \log^{\Omega(\frac{k}{\ell})} N$
 - Implies can't expect simple derandomization of the randomized compression scheme.

Future work?

Open Questions:

- Is $\chi(U_{N,\ell}) = O_{\ell}(1)?$
- Can we compress arbitrary distributions to $O(H(P) + \Delta)$? $O(H(P) + \Delta + \log^* N)$? or even $O(H(P) + \Delta + \log \log \log N)$?
- On conceptual side:
 - Better understanding of forces on language.
 - Information-theoretic
 - Computational
 - Evolutionary
 - Game-theoretic
- Design better communication solutions!

Thank You

10/31/2013

Cornell: Uncertainty in Communication

30 of 30