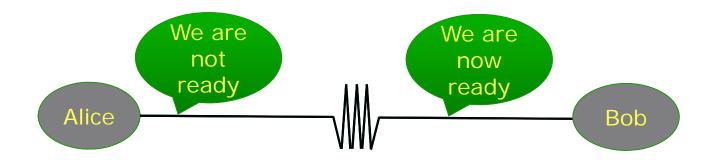
Communication Amid Uncertainty


Madhu Sudan Microsoft Research

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

Reliable Communication?

Problem from the 1940s: Advent of digital age.

Communication media are always noisy

But digital information less tolerant to noise!

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

(Mathematical) Theory of Communication

- [Shannon, 1948]
- Questions considered:
 - How to <u>compress</u> information (to eliminate common knowledge of sender and receiver) and minimize #bits communicated?
 - How to <u>detect</u> errors injected by communication channel?
 - How to <u>correct</u> them?
- Fundamental discoveries:
 - "Bit", Entropy, Mutual Information, Coding, Decoding ...
 - Driver of research and technology for 65 years!

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

Uncertainty in Communication?

- Always an issue ... but usually uncertainty in <u>channel</u> of communication.
- Lately, however ... Also have to worry about uncertainty of communicating parties about each other.
 - Communicating with printer: What format does it like the document?
 - E.g.: How would you like to archive your family photographs "digitally" when you are uncertain which format will be viewable? Would you compress?
- New class of questions ... new solutions needed.
 - Often "natural" communication encounters/solves these problems. How?
- First, a new model.

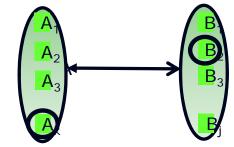
Modelling uncertainty Uncertain Communication Model Classical Shannor Jodel A₁ A₂ Channel

 A_3

New Class of Problems New challenges Needs more attention! B

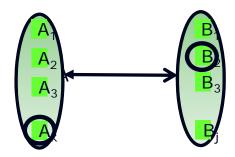
Ba

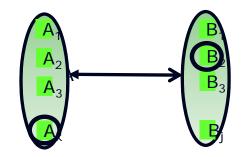
10/08/2013


Example 1: Communication with uncertain priors

- In most natural communication, sender and receiver don't understand each other's "knowledge" perfectly.
 - They form estimates, and can get close, or at least get a good idea of how far they are.
 - Sender's "prior" ≠ Receiver's "prior"; only close.
 - Yet, they seem to compress communication quite well ...
 - e.g., this talk!
 - How?
 - Classical compression schemes break down completely if Sender's "prior" ≠ Receiver's "prior";

Example: Compression

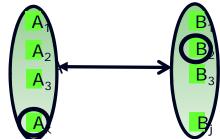

- How would you compress information if Sender and Receiver don't have a common prior?
 - Message space $\mathbb{M} = \{1, \dots, N\}$
 - Encoding: E(P,m), P dist. on \mathbb{M} , $m \leftarrow_P \mathbb{M}$.
 - Decoding: D(Q, y). (Q dist., $y \in \{0,1\}^*$)
 - Minimize $E_{m \leftarrow_P \mathbb{M}}[|E(P,m)|]$
 - Need: D(Q, E(P, m)) = m provided $P \approx Q$
- Explored in
 - [Juba,Kalai,Khanna,S'11]: With randomness.
 - [Haramaty,S'13]: Deterministic.


Flavor of results

[JKKS]:

- Assume sender and receiver have common dictionary
 - Gives sequence of longer and longer words for every message.
 - Each word corresponds to many messages!
 - Encode message m using shortest word w for which m has highest probability under P by large margin.
 - Decode w to message \widetilde{m} that has highest prob. under Q.
- Theorem: Compresses to $H(P) + 2\Delta$ bits in expectation, if dictionary is random, and $P \approx_{\Delta} Q$

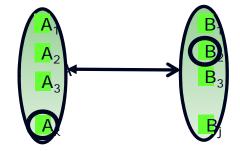
Misunderstanding and Meaning

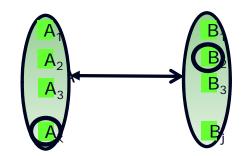

- Bits lead to action
 - How can sender ensure receiver understands instruction and acts accordingly?
 - Incentive?
 - Receiver may not want to follow sender's instructions.
 - Or receiver may not understand ...
- Goal-oriented comm. [GoldreichJubaS.12]
 - Sender must have goal + sense progress.
 - Achievement of goal is "functional" defn. of communicating meaningfully.
 - Sufficient conditions for comm. meaningfully.

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

Example: Communication as Coordination Game [Leshno,S.'13]


- Two players playing series of coordination games
 - Coordination?
 - Two players simultaneously choose 0/1 actions.
 - "Win" if both agree:
 - Alice's payoff: not less if they agree
 - Bob's payoff: strictly higher if they agree.
 - Knowledge about each other?
 - Don't know each other's strategy exactly.
 - But know "set of reasonable" strategies from which the other players chooses one. How should Bob play?
 - Can he hope to learn? After all Alice is "reasonable"?
 - Specifically: Always coordinate after finite # of initial miscoordinations?

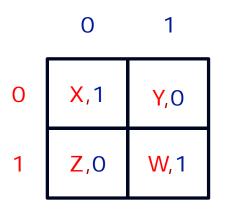

Example: Communication as Coordination Game [Leshno,S.'13]

- Two players playing series of coordination games
 - Coordination?
 - ••••
 - Knowledge about each other?
 - "Reasonable"
 - Can Bob learn to coordinate, while being "reasonable"?
- Theorem:
 - Not Deterministically (under mild "general" assumptions)
 - Alice may be trying to learn Bob at same time!
 - Yes, with randomness (for many "broad" notions of reasonability: computably-coordinatable, poly-time coordinatable etc.)
 - Can break symmetries with randomness.

10/08/2013

Conclusions

- Communication, when mixed with computation (intelligence), leads to new mathematical problems.
- Model many aspects of "natural" communication; and many challenges in the digital age.
- Lots of work to be done!


10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

Thank You!

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty

Alice Payoffs: $X \ge Y$; $W \ge Z$

10/08/2013

MSRNE 5th Anniversary: Communication Amid Uncertainty