Communication amid Uncertainty

Madhu Sudan

Microsoft, Cambridge, USA

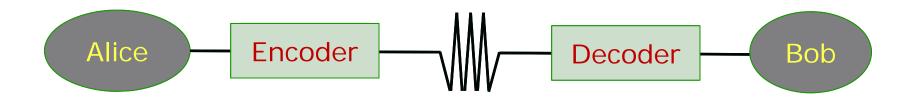
Based on:

- -Universal Semantic Communication Juba & S. (STOC 2008)
- -Goal-Oriented Communication Goldreich, Juba & S. (JACM 2012)
- -Compression without a common prior ... Kalai, Khanna, Juba & S. (ICS 2011)
- -Efficient Semantic Communication with Compatible Beliefs Juba & S. (ICS 2011)

Classical theory of communication

Shannon (1948)

Clean architecture for reliable communication.



- Remarkable mathematical discoveries: Prob. Method, Entropy, (Mutual) Information
- Needs reliable encoder + decoder (two reliable computers).

Uncertainty in Communication?

- Always has been a central problem:
 - But usually focusses on uncertainty introduced by the channel
 - Standard Solution:
 - Use error-correcting codes
 - Significantly:
 - Design Encoder/Decoder jointly
 - Deploy Encoder at Sender, Decoder at Receiver

New Era, New Challenges:

- Interacting entities not jointly designed.
 - Can't design encoder+decoder jointly.
 - Can they be build independently?
 - Can we have a theory about such?
 - Where we prove that they will work?

- Hopefully:
 - YES
 - And the world of practice will adopt principles.

Example 1

- Intersystem communication?
 - Google+ ↔ Facebook friendship?
 - Skype ↔ Facetime chat?

Problem:

When designing one system, it is <u>uncertain</u> what the other's design is (or will be in the future)!

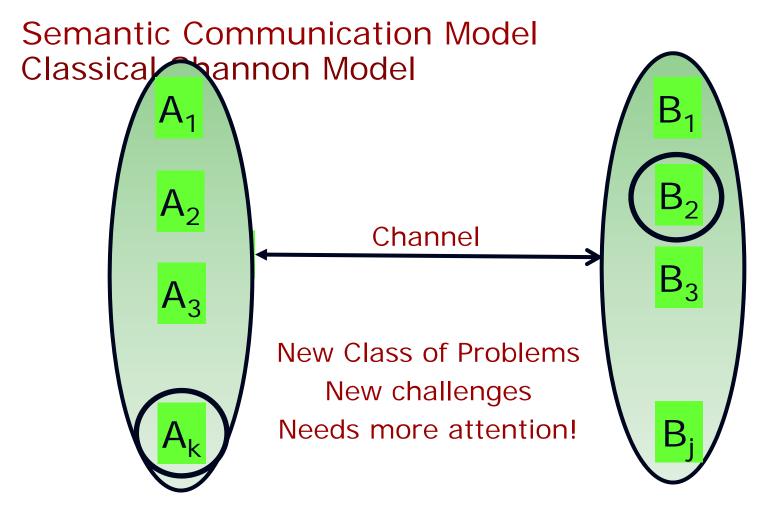
Example 2

- Heterogenous data?
 - Amazon-marketplace spends N programmer hours converting data from mom-n-pop store catalogs to uniform searchable format.
 - Healthcare analysts spend enormous #hours unifying data from multiple sources.
- Problem: Interface of software with data:
 - Challenge:
 - Software designer uncertain of data format.
 - Data designer uncertain of software.

Example 3

- Archiving data
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?
- Problem: Uncertainty of the future.
 - What systems will prevail?
 - Why aren't software systems ever constant?

Modelling uncertainty



Nature of uncertainty

- A_i 's, B_j 's differ in beliefs, but can be centrally programmed/designed.
 - [Juba, Kalai, Khanna, S.'11]: Compression in this context has graceful degradation as beliefs diverge.
 - [Haramaty,S'13]: Role of randomness in this context.
- A_i 's, B_j 's differ in behavior:
 - Nothing to design any more (behavior already fixed).
 - Best hope: Can identify certain A_i 's (universalists) that can interact successfully with many B_j 's. Can eliminate certain B_i 's on the grounds of "limited tolerance".
 - [Juba,S'08; Goldreich,J,S'12; J,S'11]: "All is not lost, if we keep goal of communication in mind"
 - [Leshno, S'13]: "Communication is a Coordination Game"
 - Details don't fit in margin ...

II: Compression under uncertain beliefs/priors

Motivation

- New era of challenges needs new solutions.
 - Most old solutions do not cope well with uncertainty.
 - The one exception?
 - Natural communication (Humans ↔ Humans)
- What are the rules for human communication?
 - "Grammar/Language"
 - What kind of needs are they serving?
 - What kind of results are they getting? (out of scope)
 - If we were to design systems serving such needs, what performance could they achieve?

Role of Dictionary (/Grammar/Language)

- Dictionary: maps words to meaning
 - Multiple words with same meaning
 - Multiple meanings to same word

```
M_1 = w_{11}, w_{12}, ...

M_2 = w_{21}, w_{22}, ...

M_3 = w_{31}, w_{32}, ...

M_4 = w_{41}, w_{42}, ...

...
```

- How to decide what word to use (encoding)?
- How to decide what a word means (decoding)?
 - Common answer: Context
- Really Dictionary specifies:
 - Encoding: context × meaning → word
 - Decoding: context × word → meaning
- Context implicit; encoding/decoding works even if context used not identical!

Context?

- In general complex notion ...
 - What does sender know/believe
 - What does receiver know/believe
 - Modifies as conversation progresses.

Our abstraction:

- Context = Probability distribution on potential "meanings".
- Certainly part of what the context provides; and sufficient abstraction to highlight the problem.

PACM: Uncertainty in Communication

The problem

- Wish to design encoding/decoding schemes (E/D) to be used as follows:
 - Sender has distribution P on $M = \{1,2,...,N\}$
 - Receiver has distribution Q on $M = \{1,2,...,N\}$
 - Sender gets $X \in M$
 - Sends E(P,X) to receiver.
 - Receiver receives Y = E(P, X)
 - Decodes to $\hat{X} = D(Q, Y)$
 - Want: $X = \hat{X}$ (provided P, Q close),
 - While minimizing $Exp_{X\leftarrow P} |E(P,X)|$

Closeness of distributions:

■ P is Δ -close to Q if for all $X \in M$,

$$\frac{1}{2^{\Delta}} \le \frac{P(X)}{Q(X)} \le 2^{\Delta}$$

■
$$P \triangle$$
-close to $Q \Rightarrow D(P||Q), D(Q||P) \le \Delta$.

Dictionary = Shared Randomness?

- Modelling the dictionary: What should it be?
- Simplifying assumption it is shared randomness, so ...
- Assume sender and receiver have some shared randomness R and X, P, Q independent of R.

$$Y = E(P, X, R)$$

$$\hat{X} = D(Q, Y, R)$$

• Want $\forall X$, $\Pr_{R}[\widehat{X} = X] \ge 1 - \epsilon$

Solution (variant of Arith. Coding)

- Use R to define sequences
 - R_1 [1], R_1 [2], R_1 [3], ...
 - R_2 [1], R_2 [2], R_2 [3], ...

 - R_N [1], R_N [2], R_N [3],
- $E_{\Delta}(P,x,R) = R_x[1...L]$, where L chosen s.t. $\forall z \neq x$ Either $R_z[1...L] \neq R_x[1...L]$

Or
$$P(z) < \frac{P(x)}{4^{\Delta}}$$

 $D_{\Delta}(Q, y, R) = \operatorname{argmax}_{\widehat{x}} \{Q(\widehat{x})\} \operatorname{among} \widehat{x} \in \{z \mid R_z[1 \dots L] = y\}$

Performance

- Obviously decoding always correct.
- Easy exercise:
 - $Exp_X [E(P,X)] = H(P) + 2 \Delta$
- Limits:
 - No scheme can achieve $(1 \epsilon) \cdot [H(P) + \Delta]$
 - Can reduce randomness needed.

Implications

- Reflects the tension between ambiguity resolution and compression.
 - Larger the △ ((estimated) gap in context), larger the encoding length.
 - Entropy is still a valid measure!
- Coding scheme reflects the nature of human process (extend messages till they feel unambiguous).
- The "shared randomness" assumption
 - A convenient starting point for discussion
 - But is dictionary independent of context?
 - This is problematic.

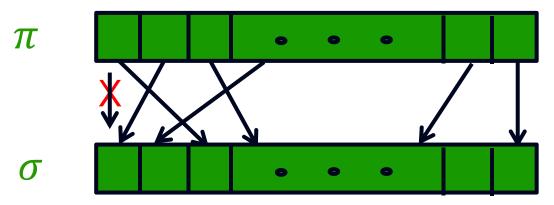
III: Deterministic Communication Amid Uncertainty

A challenging special case

- Say Alice and Bob have rankings of N players.
 - Rankings = bijections $\pi, \sigma : [N] \to [N]$
 - $\pi(i)$ = rank of i^{th} player in Alice's ranking.
- Further suppose they know rankings are close.
 - $\forall i \in [N]: |\pi(i) \sigma(i)| \le 2.$
- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (noninteractively).
 - With shared randomness 0(1)
 - Deterministically?
 - O(1)? $O(\log N)$? $O(\log \log \log N)$?

Model as a graph coloring problem

- Consider family of graphs $U_{N,\ell}$:
 - Vertices = permutations on [N]
 - Edges = ℓ-close permutations with distinct messages. (two potential Alices).



• Central question: What is $\chi(U_{N,\ell})$?

Main Results [w. Elad Haramaty]

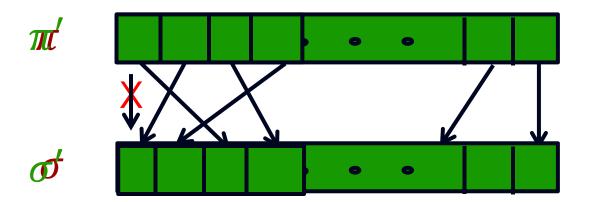
Claim: Compression length for toy problem

$$\in \left[\log \chi(U_{N,2}), \log \chi(U_{N,4})\right]$$

- Thm 1: $\chi(U_{N,\ell}) \leq \ell^{O(\ell \log^* N)}$
 - $\log^{(i)} N \equiv \log \log ... N$ (*i* times)
 - $\log^* N \equiv \min \{i \mid \log^{(i)} N \leq 1\}.$
- Thm 2: ∃ uncertain comm. schemes with
 - 1. $\operatorname{Exp}_m[|E(P,m)|] \le O(H(P) + \Delta + \log \log N)$ (0-error).
 - 1. $\operatorname{Exp}_m[|E(P,m)|] \le \ell^{O(\epsilon^{-1}(H(P) + \Delta + \log^* N))} (\epsilon \operatorname{-error}).$
- Rest of the stalk conditions Amid
 11/26/2012 Uncertainty

Restricted Uncertainty Graphs

- Will look at $U_{N,\ell,k}$
 - Vertices: restrictions of permutations to first k coordinates.
 - Edges: $\pi' \leftrightarrow \sigma'$
 - $\Leftrightarrow \exists \pi \text{ extending } \pi' \text{ and } \sigma \text{ extending } \sigma' \text{ with } \pi \leftrightarrow \sigma$



24 of 30

Homomorphisms

- *G* homomorphic to *H* ($G \rightarrow H$) if $\exists \phi: V(G) \rightarrow V(H)$ s.t. $u \leftrightarrow_G v \Rightarrow \phi(u) \leftrightarrow_H \phi(v)$
- Homorphisms?
 - G is k-colorable \Leftrightarrow G \rightarrow K_k
 - $G \rightarrow H \text{ and } H \rightarrow L \Rightarrow G \rightarrow L$
- Homomorphisms and Uncertainty graphs.
 - $U_{N,\ell} = U_{N,\ell,N} \to U_{N,\ell,N-1} \to \cdots \to U_{N,\ell,\ell+1}$
- Suffices to upper bound $\chi(U_{N,\ell,k})$

Chromatic number of $U_{N,\ell,\ell+1}$

- For $f: [N] \to [2\ell]$, Let $I_f = \{ \pi \mid f(\pi_1) = 1, \ f(\pi_i) \neq 1, \ \forall \ i \in [2\ell] \{1\} \}$
- Claim: $\forall f, I_f$ is an independent set of $U_{N,\ell,\ell+1}$
- Claim: $\forall \pi$, $\Pr_f \left[\pi \in I_f \right] \ge \frac{1}{4\ell}$
- Corollary: $\chi(U_{N,\ell,\ell+1}) \le O(\ell^2 \log N)$

Better upper bounds:

■ Say $\phi: G \to H$

$$d_{\phi}(u) \equiv |\{\phi(v) \mid v \leftrightarrow_{G} u\}|$$

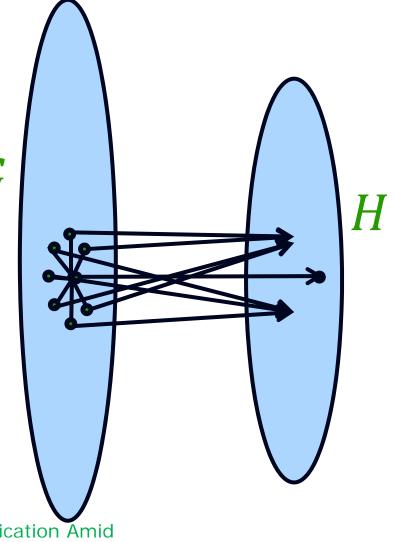
$$d_{\phi} \equiv \max_{u} \{d_{\phi}(u)\} \qquad G$$

Lemma:

$$\chi(G) \le O(d_{\phi}^2 \log \chi(H))$$

For $\phi_k \colon U_{N,\ell,k} \to U_{N,\ell,k-\ell}$ $d_{\phi_k} = \ell^{O(k)}$

MSR-I: Deterministic Communication Amid Uncertainty



Better upper bounds:

- $d_{\phi} \equiv \max_{u} \{ |\{\phi(v)|v \leftrightarrow_{G} u\}| \}$
- Lemma: $\chi(G) \le O(d_{\phi}^2 \log \chi(H))$
- For $\phi_k: U_{N,\ell,k} \to U_{N,\ell,k-\ell}$, $d_{\phi_k} \le \ell^{O(k)}$
- Corollary: $\chi(U_{N,\ell,k}) \le \ell^{O(k)} \log^{(\frac{k}{\ell})} N$
- Aside: Can show: $\chi(U_{N,\ell,k}) \ge \log^{\Omega(\frac{k}{\ell})} N$
 - Implies can't expect simple derandomization of the randomized compression scheme.

Future work?

- Open Questions:
 - Is $\chi(U_{N,\ell}) = O_{\ell}(1)$?
 - Can we compress arbitrary distributions to $O(H(P) + \Delta)$? $O(H(P) + \Delta + \log^* N)$? or even $O(H(P) + \Delta + \log \log \log N)$?
- On conceptual side:
 - Better understanding of forces on language.
 - Information-theoretic
 - Computational
 - Evolutionary
 - Game-theoretic
- Design better communication solutions!

Thank You