Two Decades of Property Testing

Madhu Sudan Microsoft Research

12/09/2014

Invariance in Property Testing @MIT

1 of 29

Kepler's Big Data Problem

Tycho Brahe (~1550-1600):

- Wished to measure planetary motion accurately.
- To confirm sun revolved around earth ... (+ other planets around sun)
- Spent 10% of Danish GNP

Johannes Kepler (~1575-1625s):

- Believed Copernicus's picture: planets in circular orbits.
- Addendum: Ratio of orbits based on Löwner-John ratios of platonic solids.
- Stole" Brahe's data (1601). Source: Michael Fowler, "Galileo & Einstein", U. Virginia
- Worked on it for nine years.
- Disproved Addendum; Confirmed Copernicus (circle -> ellipse); discovered laws of planetary motion.

Nine Years?

The challenge of analyzing big data

- Standard method:
 - Propose concept class.
 - LEARN (parameters of) best fitting concept in class to data in hand.
 - TEST to see if this is a good enough fit.
- Bottleneck
 - LEARNing is expensive; wasted if TEST rejects.
 - Can we TEST before we LEARN?
- Yes: This is PROPERTY TESTING!!

12/09/2014

Don't be

Ridiculous!

Property Testing

- Sublinear time algorithms:
 - Algorithms running in time o(input), o(output).
 - Probabilistic.
 - Correct on (approximation to) input.
 - Random access to input, output implicit.
- Property testing:
 - Restriction of sublinear time algorithms to decision problems (output = YES/NO).
 - What decision problem?
 - I concept within class that fits data?

⇔ Does data have Property?

Amazing fact: Many non-trivial algorithms exist!

12/09/2014

Example 1: Polling

Is the majority of the population Red/Blue

• $C = \bigcup_{\alpha > .5} C_{\alpha}$; $C_{\alpha} = \{\text{populations with } \alpha \text{ fraction } \text{Red} \}$

• Can Test for $\alpha \ge .5$ by random sampling.

• Accept w.h.p. if $\alpha \ge .5$

Reject w.h.p. if $\alpha < .5 - \epsilon$

• Sample size $\propto \Theta\left(\frac{1}{\epsilon^2}\right)$

Independent of size of population

 Other similar examples: (basic statistical parameters; averages, quantiles, variance ...)

Example 2: Linearity

Can test for homomorphisms:

- Given: $f: G \rightarrow H(G, H \text{ finite groups})$, is f essentially a homomorphism?
- Test:
 - Pick $x, y \in G$ uniformly, ind. at random;

• Verify $f(x) \cdot f(y) = f(x \cdot y)$

- Completeness: accepts homomorphisms w.p. 1
 (Obvious)
- Soundness: Rejects f w.p prob. Proportional to its "distance" (margin) from homomorphisms.
 Not obvious, [BlumLubyRubinfeld'90])

Linearity Analysis

- Given f: G → H that usually passes test, "pretend" it is close to a homomorphism g: G → H.
 - Locally decode g
 - $\forall x, g(x) \triangleq f(x,r) \cdot f(r)^{-1}$ for random $r \in G$
 - Prove:
 - *g* is close to *f*. (Easy)
 - *g* is a homomorphism. (Challenging)
 - Why should $f(x,r) \cdot f(r)^{-1} = f(x,s) \cdot f(s)^{-1}$?

[Requires some algebraic reasoning.]

Note: New elements in analysis!

A subtle change

Compare:

- f usually satisfies $f(x, y) = f(x) \cdot f(y)$.
- Population has close to 50% Reds.

Vs.

- f is close to g that <u>always</u> satisfies $g(x,y) = f(x) \cdot g(y)$
- Population is close to one with <u>exactly</u> 50% Reds.
- Notions same for Polling; not Homomorphisms.
- Latter notion is generalizable to any property!
- Notion of choice in Property Testing

12/09/2014

History (slightly abbreviated)

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing + Definition
- [Goldreich,Goldwasser,Ron]
 - Graph property testing + systematic study
- Since then ... many developments
 - More graph properties, statistical properties, matrix properties, properties of Boolean functions ...
 - More algebraic properties

Example 3: **Δ-free-ness**

- Given graph G, is it free of triangles?
- Test:
 - Pick vertices u, v, w at random.
 - Accept if u, v, w don't form a triangle
- Analysis: [Alon-Shapira]
 - Use Szemeredi's regularity lemma.
 - Can partition any graph into $O_{\epsilon}(1)$ parts.
 - Between each part edges "random".
 - If some three well-connected partitions form triangle; then many triangles, else close to triangle-free

Example 4: Long code/Junta testing

- Given $f: \{0,1\}^n \rightarrow \{0,1\}$ does it depend on few coordinates. [BGS, Håstad, FKRSS... Blais]
 - Motivation: data = genome; f represents some disease;
 - Junta-testing: Disease caused by few features?
 - Testing before learning?
- Fuzzy Test: [KKMO, MOO]
 - Pick $x \sim U(\{0,1\}^n)$ and $y \in -noisy$ copy of x.

• Accept iff f(x) = f(y); Repeat

- Analysis:
 - If f function of very few variables \Rightarrow Accept w.h.p.
 - If f depends on many variables \Rightarrow Reject w.p. $\frac{1}{2}$.
 - Techniques: Fourier analysis, Influence of variables, hypercontractivity ...

Example 5: Distribution Testing

- Given samples from unknown distribution P on [n]
- Determine if $H(P) \ge k$
- [Batu et al., Valiant, Valiant²]:
 - #samples needed = $\Theta(\frac{n}{\log n})$!
 - Techniques:
 - Multivariate Central Limit Theorem
 - Stein's method
 - Hermite polynomials ...

12/09/2014

(Dense) Graph Property Testing

- Theorem [AlonFischerNewmanShapira]:
 Graph property *P* is *O*(1)-query testable
 ⇔ *P* is "determined by regularity".
 - Suggested by [Goldreich,Goldwasser,Ron]
 - In particular implies all hereditary properties are testable [Alon Shapira]

- Nice characterization of testability?
 - Uniform test for all graph properties.
 - Single unifying analysis e.g. △-freeness & 3-colorability

Contrast with Low-degree testing

- Given $f: \mathbb{F}_q^n \to \mathbb{F}_q$; Is $\deg(f) \le d$?
- Roughly, BLR deals with d = 1;

d, q arbitrary: [KaufmanRon'04] Analysis a la ...

Aside: Importance of Low-degree Testing

Central element in PCPs.

- Till [Dinur'06] no proof without (robust) low-degree testing.
- Since: Best proofs (smallest, tightest parameters etc.) rely (in/)directly on improvements to low-degree tests.

Connected to Gowers Norms:

- [Viola-Wigderson'07]: [AKKLR]⇒Hardness Amplification
- Yield Locally Testable Codes
 - Best in high-rate regime.
 - BarakGopalanHåstadMekaRaghavendraSteurer'12]:

 $[BKSSZ'11] \Rightarrow$ Small-set expanders.

Some (introspective) questions

- What is qualitatively novel about linearity testing relative to classical statistics?
- Why are the mathematical underpinnings of different themes so different?
- Why is there no analog of "graph property testing" (broad class of properties, totally classified wrt testability) in algebraic world?
 What is the context for low-degree testing?
- Answer to all: Invariance!

12/09/2014

Invariance?

- Property $P \subseteq \{f: D \to R\}$
- Property *P* invariant under 1-1 π: D → D, if *f* ∈ *P* ⇒ *f* ∘ π ∈ *P*
 Property *P* invariant under group *G* if

 $\forall \pi \in G \Rightarrow P$ is invariant under π .

- (Maximal) G is invariance class of P.
- Main Observation: Different property tests unified/separated by invariance class.

12/09/2014

Invariances (contd.)

Some examples:

- Classical statistics: Invariant under all permutations.
- Graph properties: Invariant under vertex renaming.
- Boolean properties: Invariant under variable renaming.
- Matrix properties: Invariant under mult. by invertible matrix.
- Algebraic Properties = ?
- Answers to (introspective) questions.
 - Classical statistics only dealt with S_D
 - Different invariances \Rightarrow different techniques.
 - Context for algebra?

12/09/2014

Abstracting algebraic properties

- [Kaufman+S.'08]
- Affine Invariance:
 - Domain = Big field (\mathbb{F}_{q^n})

or vector space over small field (\mathbb{F}_q^n) .

- Property invariant under <u>affine transformations</u> of domain $(x \mapsto A.x + b)$
- Linearity of Properties:
 - Range = small field (\mathbb{F}_q)
 - Property = vector space over range.

Why study affine-invariance?

- Common abstraction of properties studied in [BLR], [RS], [ALMSS], [AKKLR], [KR], [KL], [JPRZ].
 - Variations on low-degree polynomials)
- Hopes
 - Unify existing proofs
 - Classify/characterize testability
 - Find new testable codes (w. novel parameters)
- Rest of the talk: Brief summary of findings

12/09/2014

Results 1: AKKLR Conjecture

- *P k*-locally testable \Rightarrow *P* satisfies *k*-local constraint
- AKKLR Conjecture: k-local constraint + symmetry (2-transitive invariance) $\Rightarrow P k'$ -locally testable.
- Theorem [Kaufman+S.'08]: $P \subseteq \{f: \mathbb{F}_Q^n \to \mathbb{F}_q\}$ has k-local constraint $\Rightarrow k'(k, Q)$ -locally testable.
 - Notion of "single-orbit" \Rightarrow Unification!
 - Structure of affine-invariant properties.
- Theorem [Grigorescu,Kaufman,S.08]:
 - $\exists P \subseteq \{\mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}\}\$ with 8-local constraint that is not $\log \log \log n$ -LDPC.
- Thm[BMSS'11]: $\exists 0(1)$ -LDPC that is not 0(1)-LTC.

Results 2: Accidental +ve

- [Bhattacharyya,Kopparty,Schoenebeck,S.,Zuckerman'10]:
 - Goal: Test low-degree polynomials over \mathbb{F}_2 .
 - Hope: Use known better tests from the 90s.
 - Result: New technique + stronger result:
 - [AKKLR] natural test rejects $\Omega(1)$ -far f'ns w.p. $\Omega(2^{-d})$.
 - Ours: same test rejects $\Omega(2^{-d})$ -far w.p. $\Omega(1)$.
- [Ron-Zewi,S'12]: Better query complexity for low-degree testing, when $d > \frac{q}{2}$; $q = 2^t$.
 - When d < q/2; q-queries suffice.
 - When $\frac{q}{2} < d < q$; known tests made q^2 -queries.
 - Our result: O(q)-queries suffice.
 - Techniques: single-orbit, structure of affine-invariance...
- Non-linear affine-invariant properties ...

Results 3: Lifting

- An annoying way to construct locally constrained properties:
 - Define base property $B \subseteq \{f : \mathbb{F}_q \to \mathbb{F}_q\}$.
 - $n-\text{Lifted property} \left\{ c \mathbb{R}^n \mathbb{R} + c \mathbb{R} + c \mathbb{R} + c \mathbb{R} \right\}$

Bad News + Bad News = Good News!

complicated usage and analysis.

 [Friedl,S'95]: If ^q/₂ < d < q, ∃f: Fⁿ_q → F_q; deg(f) > d; such that on every line, deg(f|_{line}) ≤ d.
 (Reason for "accidental result 2" on last slide.)

12/09/2014

Invariance in Property Testing @MIT

after

Result 3: Lifting (contd.)

- Guo,Kopparty,S.'13] Take any base property and lift it:
 - Inherits rel. distance of base property.
 - Testable by [Kaufman+S.'08].
 - Rate = ?; Needs adhoc analysis.
- Base property = deg. d poly with $\frac{q}{2} < d < q$:
 - Code has much higher rate
 - Rate \rightarrow 1 for constant dimensional lifts, as $\frac{d}{a} \rightarrow 1$.
 - Gives only known codes of rate → 1 that are simultaneously sub-linearly locally testable and decodable.

Conclusions

- Returning to bigger picture:
 - Invariance explains the diversity in property testing.
 - Different invariance classes \Rightarrow different techniques.
 - Same invariance class ⇒ same techniques?
- Need to investigate:
 - Properties of real-valued functions!
 - Properties invariant (only) under variable renaming (a la junta-testing).
 - Invariances of "inference problems"?
 - Queries vs. samples?

Thank You

12/09/2014

Invariance in Property Testing @MIT

29 of 29