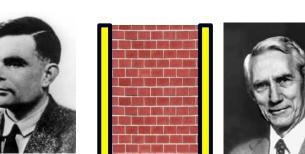
Communication Amid Uncertainty

Madhu Sudan Microsoft Research

Based on

- Juba, S. (STOC 2008, ITCS 2011)
- Goldreich, Juba, S. (JACM 2011)
- Juba, Kalai, Khanna, S. (ITCS 2011)
- Haramaty, S. (ITCS 2014)
- Canonne, Guruswami, Meka, S. (ITCS 2015)
- Leshno, S. (manuscript)


Harvard: Uncertain Communication

Communication vs. Computation

- Interdependent technologies: Neither can exist without other
- Technologies/Products/Commerce developed (mostly) independently.
 - Early products based on clean abstractions of the other.
 - Later versions added other capability as afterthought.
 - Today products ... deeply integrated.
- Deep theories:

Well separated ... and have stayed that way

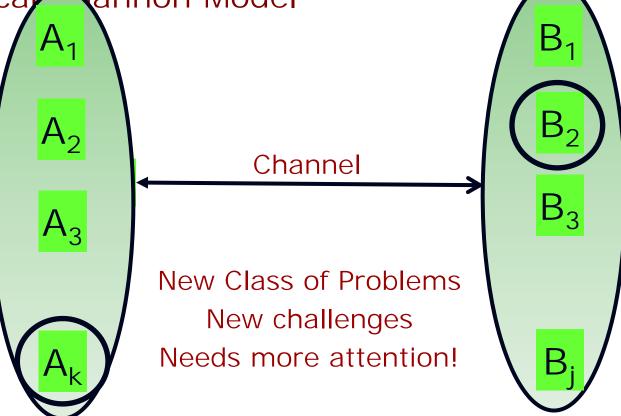
Turing '36

Shannon '48

Consequences of the wall

- Computing theory:
 - Fundamental principle = Universality
 - You can program your computer to do whatever you want.
 - ⇒ Heterogeneity of devices
- Communication theory:
 - Centralized design (Encoder, Decoder, Compression, IPv4, TCP/IP).
 - You can NOT program your device!
 - ← Homogeneity of devices
- Contradiction! But does it matter?
 - Yes!

Sample problems:


- Universal printing:
 - You are visiting a friend. You can use their Wifi network, but not their printer. Why?
- Projecting from your laptop:
 - Machines that learn to communicate, and learn to understand each other.
- Digital libraries:
 - Data that lives forever (communication across time), while devices change.

Essence of "semantics": Uncertainty

- Shannon:
 - "The significant aspect is that the actual message is one selected from a set of possible messages"
- Essence of unreliability today:
 - Context: Determines set of possible messages.
 - dictionary, grammar, general knowledge
 - coding scheme, prior distribution, communication protocols ...
 - Context is HUGE; and not shared perfectly;

Modelling uncertainty

Uncertain Communication Model Classical

Hope

- Better understanding of existing mechanisms
 - In natural communication
 - In "ad-hoc" designs
- What problems are they solving?
- Better solutions?
 - Or at least understand how to measure the quality of a solution.

II: Uncertain Compression

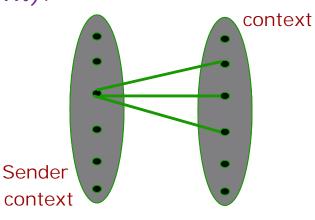
11/10/2014

Human-Human Communication

 $M_{1} = w_{11}, w_{12}, \dots$ $M_{2} = w_{21}, w_{22}, \dots$ $M_{3} = w_{31}, w_{32}, \dots$ $M_{4} = w_{41}, w_{42}, \dots$

- Role of dictionary = ?
 - [Juba, Kalai, Khanna, S. 11]
- Dictionary: list of words representing message
 - words appear against multiple messages
 - multiple words per message.
- How to decide which word to use? Context!
 - Encoding: Given message, use shortest unambiguous word in current context.
 - Decoding: Given word, use most likely message in current context, (among plausible messages)
- Context = ???. Prob. distribution on messages

 P_i = Prob [message = M_i]


Human Communication - 2

 $M_{1} = w_{11}, w_{12}, \dots$ $M_{2} = w_{21}, w_{22}, \dots$ $M_{3} = w_{31}, w_{32}, \dots$ $M_{4} = w_{41}, w_{42}, \dots$ \dots

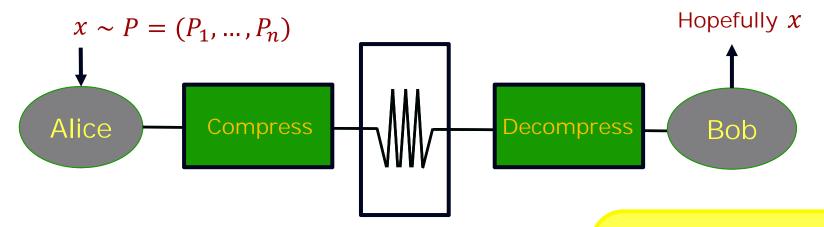
Good (Ideal?) dictionary

- Should compress messages to entropy of context: $H(P = \langle P_1, ..., P_N \rangle).$
- Even better dictionary?
 - Should not assume context of sender/receiver identical!
 - Compression should work even if sender <u>uncertain</u> about receiver (or receivers' context).
 Receiver

Theorem [JKKS]: If dictionary is "random" then compression achieves message length $H(P) + \Delta$, if sender and receiver distributions are " Δ -close".

Implications

- Reflects tension between ambiguity resolution and compression.
 - Larger the gap in context (Δ), larger the encoding length.
- Coding scheme reflects human communication?
- "Shared randomness" debatable assumption:
 - Dictionaries do have more structure.
 - Deterministic communication? [Haramaty+S,14]
 - Randomness imperfectly shared? Next ...


III: Imperfectly Shared Randomness

11/10/2014

Harvard: Uncertain Communication

Communication (Complexity)

Compression (Shannon, Noiseless Channel)

- What will Bob do with *x*?
 - Often knowledge of *x* is overkill.
 - [Yao]'s model:
 - Bob has private information y.
 - Wants to know $f(x, y) \in \{0, 1\}$.

In general, model allows interaction. For this talk, only one way comm.

Can we get away with much less communication?

Brief history

- I problems where Alice can get away with much fewer bits of communication.
 - Example: $\bigoplus (x, y) \triangleq \bigoplus_i (x_i \bigoplus y_i)$
 - But very few such deterministically.
- Enter Randomness:
 - Alice & Bob share random string r (ind. of x, y)
 - Many more problems; Example:
 - Eq(x, y) = 1 if x = y and 0 otherwise
 - Deterministically: $\Theta(n)$
 - Randomized: 0(1)
- Uncertainty-motivated question:
 - Does randomness have to be perfectly shared?

Alice

r

Bob

S

Results

- [Newman '90s]:
 - *CC* without sharing \leq *CC* with sharing $+ \log n$
- But additive cost of log *n* may be too much.
 - Compression! Equality!!
- Model recently studied by [Bavarian et al.'14]
 - Equality: O(1) bit protocol w. imperfect sharing
- Our Results: [Canonne, Guruwami, Meka, S.'15]
 - Compression: $O(H(P) + \Delta)$
 - Generally: k bits with shared randomness
 - $\Rightarrow 2^k$ bits with imperfect sharing.
 - $k \rightarrow 2^k$ loss is necessary.

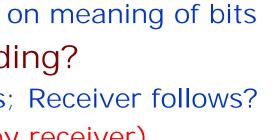
Some General Lessons

- Compression Protocol:
 - Adds "error-correction" to [JKKS] protocol.
 - Send shortest word that is far from words of other high probability messages.
 - Another natural protocol.
- General Protocol:
 - Much more "statistical"
 - Classical protocol for Equality:
 - Alice sends random coordinate of ECC(x)
 - New Protocol
 - Alice send # 1's in random subset of coordinates.

IV: Coordination

11/10/2014

Harvard: Uncertain Communication


17 of 26

Communicate meaning?

- Ultimate goal:
 - Message \Rightarrow Instructions.
 - What is this dictionary?
 - Can it be learned by communication?
- At first glance:
 - Ambiguity can never be resolved by communication (even a theorem [JS'08]).
- Second look:
 - Needs more careful definitions.
 - Meaning = mix of communication + actions + incentives.

(Mis) Understanding?

- Uncertainty problem:
 - Sender/receiver disagree on meaning of bits
- Definition of Understanding?
 - Sender sends instructions; Receiver follows?
 - Errors undetectable (by receiver)
 - Not the right definition anyway:
 - Does receiver want to follow instructions
 - What does receiver gain by following instructions? Must have its own "Goal"/"Incentives".
- Goldreich, Juba, S. 2012]: Goal-oriented communication:

Sender

dictionary

Receiver

dictionary

(Mis) Understanding?

- Uncertainty problem:
 - Sender/receiver disagree on meaning of bits
- Definition of Understanding?
 - Receiver has goals/incentives.
- Goldreich, Juba, S. 2012]: Goal-oriented communication:
 - Define general communication problems (and goals)
 - Show that if
 - Sender can help receiver achieve goal (from any state)

Sender

dictionary

- Receiver can sense progress towards goal
- then
 - Receiver can achieve goal.
- Functional definition of understanding.

Receiver

dictionary

Illustration: (Repeated) Coordination

[Leshno,S.]

- Basic Coordination Game:
 - Alice and Bob simultaneously choose actions $\in \{0,1\}$
 - If both pick same action, both win.
 - If they pick opposite actions, both lose.
- Main challenge: Don't know what the other person will choose when making our choice.
- Repeated version:
 - Play a sequence of games, using outcome of previous games to learn what the other player may do next.
 - Goal: Eventual perpetual coordination.

Our setting

- Repeated coordination game with uncertainty:
 - Bob's perspective:
 - Knows his payoffs 1 for coord.; 0 for not.
 - Does not know Alice's payoffs (uncertainty):
 - May vary with round
 - But for every action of Alice, payoff does not decrease if Bob coordinates (compatibility).
 - Knows a set S_A of strategies she may employ ("reasonable behaviors").
 - Can he learn to coordinate eventually?

Coordination with Uncertainty

- Mixes essential ingredients:
 - Communication: Actions can be use to communicate (future actions).
 - Control: Communication (may) influence future actions.
 - Incentives:
 - Bob has incentive to coordinate.
 - Alice not averse.
- What do the general results say?
 - **J** Universal strategy U s.t.
 - ∀ Alice s.t. ∃ Bob who coordinates with Alice from any state.
 - U coordinates with Alice.

Lessons

- Coordination is possible:
 - Even in extreme settings where
 - Alice has almost no idea of Bob
 - Bob has almost no idea of Alice
 - Alice is trying to learn Bob
 - Bob is trying to learn Alice
- Learning is slow ...
 - Need to incorporate beliefs to measure efficiency. [Juba, S. 2011]
 - Does process become more efficient when languages have structure? [Open]

Conclusions

- Context in communication:
 - White elephant in the room.
 - Huge, unmentionable, weighing us down.
- Context usually imperfectly shared.
- Uncertainty + Scale \Rightarrow New class of problems.
- What are new "error-correcting" mechanisms?
 - Can be build reliability on top of unreliability?

Thank You!

11/10/2014

Harvard: Uncertain Communication

26 of 26