Reliable Meaningful Communication

Madhu Sudan

Microsoft, Cambridge, USA

Reliable Communication?

Problem from the 1940s: Advent of digital age.

Communication media are always noisy
 But digital information less tolerant to noise!

Theory of Communication

[Shannon, 1948]

- Model for noisy communication channels
- Architecture for reliable communication
- Analysis of some communication schemes
- Limits to any communication scheme

Modelling Noisy Channels

- Channel = Probabilistic Map from Input to Output
 - Example: Binary Symmetric Channel (BSC(p))

Some limiting values

- p=0
 - Channel is perfectly reliable.
 - No need to do anything to get 100% utilization (1 bit of information received/bit sent)
- $p = \frac{1}{2}$
 - Channel output independent of sender's signal.
 - No way to get any information through.
 (0 bits of information received/bit sent)

Lessons from Repetition

Can repeat (retransmit) message bits many times

- E.g., 0100 → 000 111 000 000
- Decoding: take majority

■ E.g., 010 110 011 100 → 0110

- Utilization rate = 1/3
- More we repeat, more reliable the transmission.
- More information we have to transmit, less reliable is the transmission.
- Tradeoff inherent in all schemes?
- What do other schemes look like?

Shannon's Architecture

- Sender "Encodes" before transmitting
- Receiver "Decodes" after receiving
- Encoder/Decoder arbitrary functions. $E: \{0,1\}^k \to \{0,1\}^n$ $D: \{0,1\}^n \to \{0,1\}^k$

• Rate =
$$\frac{k}{n}$$
;

• Hope: Usually m = D(E(m) + error)

Shannon's Analysis

• Coding Theorem:

- For every p, there exists Encoder/Decoder that corrects p fraction errors with high probability with Rate $\rightarrow 1 - H(p)$
- H(p): Binary entropy function:

•
$$H(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$

• $H(0) = 0; H\left(\frac{1}{2}\right) = 1; H(p) \text{ monotone } 0$

- So if p = .499; Channel still has utility!
- Note on probability: Goes to 1 as $k \rightarrow \infty$

Limit theorems

- Converse Coding Theorem:
 - If Encoder/Decoder have Rate > 1 H(p) then decoder output wrong with prob. 1 - exp(-n).
- Entropy is right measure of loss due to error.
- Entropy = ?
 - Measures uncertainty of random variable.
 - In our case: Noise).

An aside: Data Compression

- Noisy encoding + Decoding ⇒ Message + Error
 - Receiver knows both).
 - Total length of transmission = n
 - Message length = n H(p).n
 - So is error-length = H(p).n?
- Shannon's Noiseless Coding Theorem:
 - Information (modelled as random variable) can be compressed to its entropy ... with some restrictions
 - General version due to Huffman

1948-2013?

- [Hamming 1950]: Error-correcting codes
 - More "constructive" look at encoding/decoding functions.
- Many new codes/encoding functions:
 - Based on Algebra, Graph-Theory, Probability.
- Many novel algorithms:
 - Make encoding/decoding efficient.
 - Result:
 - Most channels can be exploited.
 - Even if error is not probabilistic.
 - Profound influence on practice.

Modern Challenges

New Kind of Uncertainty

- Uncertainty always has been a central problem:
 - But usually focusses on uncertainty introduced by the <u>channel</u>
 - Rest of the talk: Uncertainty at the endpoints (Alice/Bob)
- Modern complication:
 - Alice+Bob communicating using computers
 - Both know how to program.
 - May end up changing encoder/decoder (unintentionally/unilaterally).
- Alice: How should I "explain" to Bob?
- Bob: What did Alice mean to say?

New Era, New Challenges:

Interacting entities not jointly designed.

- Can't design encoder+decoder jointly.
- Can they be build independently?
- Can we have a theory about such?
 - Where we prove that they will work?

Hopefully:

- YES
- And the world of practice will adopt principles.

Example Problem

- Archiving data
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?
- Problem: Uncertainty of the future.
 - What formats/systems will prevail?
 - Why aren't software systems ever constant?

Challenge:

- If Decoder does not know the Encoder, how should it try to guess what it meant?
- Similar example:
 - Learning to speak a foreign language

Humans do ... (?)

- Can we understand how/why?
- Will we be restricted to talking to humans only?
- Can we learn to talk to "aliens"? Whales? ☺
- Claim:
 - Questions can be formulated mathematically.
 - Solutions still being explored.

Modelling uncertainty

Language as compression

- Why are dictionaries so redundant+ambiguous?
 - Dictionary = map from words to meaning
 - For many words, multiple meanings
 - For every meaning, multiple words/phrases
 - Why?
- Explanation: "Context"
 - Dictionary:
 - Encoder: Context1 × Meaning → Word
 - Decoder: Context2 × Word → Meaning
 - Tries to compress length of word
 - Should works even if Context1 ≠ Context2
- [Juba,Kalai,Khanna,S'11],[Haramaty,S'13]: Can design encoders/decoders that work with uncertain context.

A challenging special case

- Say Alice and Bob have rankings of N movies.
 - Rankings = bijections $\pi, \sigma : [N] \rightarrow [N]$
 - $\pi(i)$ = rank of *i*th player in Alice's ranking.
- Further suppose they know rankings are close.

• $\forall i \in [N]: |\pi(i) - \sigma(i)| \le 2.$

- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (noninteractively).
 - With shared randomness O(1)
 - Deterministically?

• O(1)? $O(\log N)$? $O(\log \log \log N)$?

Meaning of Meaning?

- Difference between meaning and words
 - Exemplified in
 - Turing machine vs. universal encoding
 - Algorithm vs. computer program
 - Can we learn to communicate former?
 - Many universal TMs, programming languages
- [Juba,S.'08], [Goldreich,Juba,S.'12]:
 - Not generically ...
 - Must have a <u>goal</u>: what will we get from the bits?
 - Must be able to <u>sense</u> progress towards goal.
 - Can use sensing to <u>detect errors</u> in understanding, and to learn correct <u>meaning</u>.
- [Leshno,S'13]:
 - Game theoretic interpretation

Communication as Coordination Game [Leshno,S.'13]

Two players playing series of coordination games

- Coordination?
 - Two players simultaneously choose 0/1 actions.
 - "Win" if both agree:
 - Alice's payoff: not less if they agree
 - Bob's payoff: strictly higher if they agree.
 - How should Bob play?
 - Doesn't know what Alice will do. But can hope to learn.
 - Can he hope to eventually learn her behavior and (after finite # of miscoordinations) always coordinate?

Theorem:

- Not Deterministically (under mild "general" assumptions)
- Yes with randomness (under mild restrictions)

Summary

- Understanding how to communicate meaning is challenging:
 - Randomness remains key resource!
 - Much still to be explored.
 - Needs to incorporate ideas from many facets
 - Information theory
 - Computability/Complexity
 - Game theory
 - Learning, Evolution ...
- But Mathematics has no boundaries ...

Thank You!

01/22/2014

IISc: Reliable Meaningful Communication

23 of 23