Imperfectly Shared Randomness in Communication

Madhu Sudan Microsoft Research

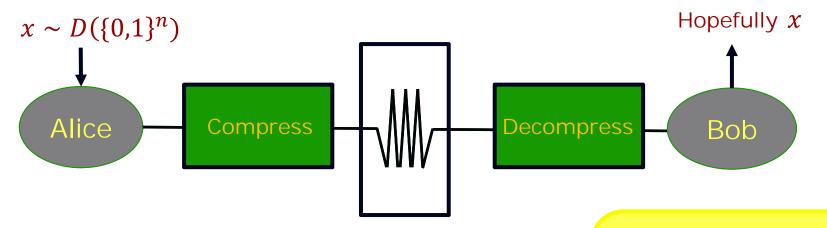
Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka ().

11/3/2014

ISR in Communication: Probably@MIT

Communication (Complexity)

Recall Shannon (Noiseless setting)



- What will Bob do with *x*?
 - Often knowledge of *x* is overkill.
 - [Yao]'s model:
 - Bob has private information y.
 - Wants to know $f(x, y) \in \{0, 1\}$.

In general, model allows interaction. For this talk, only one way comm.

Can we get away with much less communication?

Example:

Parity:

- $x = x_1 x_2 \dots x_n; y = y_1 y_2 \dots y_n;$
- $f(x,y) = \sum_{i} (x_i + y_i) \pmod{2} \triangleq \bigoplus_{i} (x_i \bigoplus y_i)$
- Solution:
 - Alice sends $a = \bigoplus_i x_i$ to Bob.
 - Bob computes $b = \bigoplus_i y_i$. Outputs $a \oplus b$.
- 1 bit of communication!
- (No distributional assumption on x!)

Randomness in Communication

- As in many aspects of CS, randomness often helps find (more efficient) solutions.
- Two "Probabilistic Communication" Models:
 - Private randomness:
 - Alice tosses random coins and uses that to determine what to send to Bob.
 - Shared randomness:
 - Alice and Bob share random string $r \in \{0,1\}^*$
 - Alice's message depends on r
 - Bob's use of message depends on *r*.
- Det. $CC \ge Private$. $CC \ge Shared$. CC

Example: Equality Testing

- f(x,y) = 1 if x = y and 0 o.w.
 - Deterministically: Communicate $\Omega(n)$ bits
 - With private randomness:
 - Alice encodes $x \mapsto E(x)$; $(E: \{0,1\}^n \to \{0,1\}^N)$
 - Picks $i \leftarrow_U [N]$; sends $(i, E(x)_i)$ to Bob.
 - Bob receives (i, b) and outputs 1 if $E(y)_i = b$
 - Priv. $CC = O(\log n)$ bits
 - With shared randomness:
 - Alice and Bob share *i*.
 - Alice sends $E(x)_i$.
 - Shared CC = O(1) bits.

This talk: Imperfect Sharing

- Generic motivation:
 - Where does the shared randomness come from?
 - Nature/Collective experience ⇒ Noisy
 - Do parties have to agree on their shares perfectly?
 - Can they get away with imperfection?
 - Is their a price?

Model: Imperfectly Shared Randomness

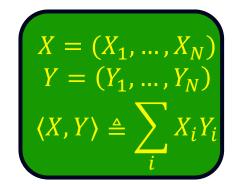
- Alice $\leftarrow r$; and Bob $\leftarrow s$ where
 - (r, s) = i.i.d. sequence of correlated pairs $(r_i, s_i)_i$; $r_i, s_i \in \{-1, +1\}; \mathbb{E}[r_i] = \mathbb{E}[s_i] = 0; \mathbb{E}[r_i s_i] = \rho \ge 0$.
- Notation:
 - $isr_{\rho}(f) = cc of f$ with ρ -correlated bits.
 - *psr(f)*: Perfectly Shared Randomness cc.
 - priv(f): cc with PRIVate randomness
- Starting point: for Boolean functions f
 - $psr(f) \le isr_{\rho}(f) \le priv(f) \le psr(f) + \log n$
 - What if $psr(f) \ll \log n$? E.g. psr(f) = O(1)

Results

- Model first studied by [Bavarian et al.'14] ("Independently and earlier").
 - They show isr(Equality) = O(1)

- Our Results:
 - Generally: $psr(f) \le k \Rightarrow isr(f) \le 2^k$
 - Converse: $\exists f \text{ with } psr(f) \leq k \& isr(f) \geq 2^k$

Equality Testing (our proof)



Key idea: Think inner products.

• Encode $x \mapsto X = E(x); y \mapsto Y = E(y); X, Y \in \{-1, +1\}^N$

$$\bullet x = y \Rightarrow \langle X, Y \rangle = N$$

$$\bullet x \neq y \Rightarrow \langle X, Y \rangle \leq N/2$$

- Estimating inner products:
 - Using ideas from low-distortion embeddings ...
 - Alice: Picks Gaussian $G \in \mathbb{R}^N$, sends $\langle G, X \rangle$
 - Bob: has $G' \sim_{\rho} G$; compares $\langle G, X \rangle$ with $\langle G', Y \rangle$
 - (mod details): $O_{\rho}(1)$ bits suffice if $G \approx_{\rho} G'$
 - Bavarian et al.] Alternate protocol.

General Communication

• Idea: All communication \leq Inner Products

For each random string R

• Alice's message = $i_R \in [2^k]$

• Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$

• W.p.
$$\geq \frac{2}{3}$$
 over R, $f_R(i_R)$ is the right answer.

General Communication

- For each random string R
 - Alice's message = $i_R \in [2^k]$
 - Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.
- Vector representation:
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).
 - $f_R(i_R) = \langle x_R, y_R \rangle$; Acc. Prob. $\propto \langle X, Y \rangle$; $X = (x_R)_R$; $Y = (y_R)_R$
 - Gaussian protocol estimates inner products of unit vectors to within $\pm \epsilon$ with $O\left(\frac{1}{\epsilon^2}\right)$ communication.

Main Technical Result: Matching lower bound

- There exists (promise) problem f s.t.
 - $psr(f) \le k$
 - $isr_{\rho}(f) \ge \exp(k)$
- The Problem:
 - Gap Sparse Inner Product (G-Sparse-IP).
 - Alice gets sparse $x \in \{0,1\}^n$; wt(x) ≈ 2^{-k} · n
 - Bob gets $y \in \{0,1\}^n$
 - Promise: $\langle x, y \rangle \ge (.9)2^{-k} \cdot n \text{ or } \langle x, y \rangle \le (.6)2^{-k} \cdot n.$
 - Decide which.

psr Protocol for G-Sparse-IP

- Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.
- Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.
- Shared randomness: i_1, i_2, i_3, \dots uniform over [n]
- Alice \rightarrow Bob: smallest index *j* s.t. $x_{i_j} \neq 0$.
- Bob: Accept if $y_{i_i} = 1$
- Expect $j \approx 2^k$; $psr \leq k$.

ISR lower bounds

- Challenge: Usual CC lower bounds give a distribution and prove lower bound against it.
- G-Sparse-IP has a low-complexity protocol for every input, with shared randomness.
- Thus for every distribution, there exists a deterministic low-complexity protocol!
- So usual method can't work ...

 Need to fix strategy first and then "tailor-make" a hard distribution for the strategy ...

ISR lower bound for GSIP: Overview

- Strategies: Alice $f_r(x) \in [\ell]$; Bob $g_s(y) \in \{0,1\}^{\ell}$;
- Two possibilities:
 - Case 1: Alice's strategy and Bob's strategy have common highly "influential coordinate":
 - (*i* s.t. flipping *x_i* changes Alice's message etc.)
 - Leads to protocol for "agreement distillation" [We prove this is impossible.]
 - Case 2: Strategies have no common influential variable:
 - Invariance Principle \Rightarrow Solves some Gaussian problem
 - High complexity lower bound for Gaussian problem. (Details shortly)

Case 1: Agreement Distillation

- Problem: Charlie $\leftarrow r$; Dana $\leftarrow s$; $(r,s) \rho$ -correlated
- Goal: Charlie outputs u; Dana outputs v;

 $H_{\infty}(u), H_{\infty}(v) \ge t;$ $\Pr[u = v] \ge \gamma$

- Lemma: With zero communication $\gamma = 2^{-\Omega(t)}$;
- Proof: "Small-set expansion of noisy hypercube"
 - Well-known by now ... application of Bonami's lemma.
 - See, e.g., [Analysis of Boolean functions, O'Donnell]
- Corollary: For *c* bits of communication, $c \ge \epsilon \cdot t + \log \gamma$

Completing Case 1

■ Bad
$$\triangleq \{i \mid \Pr_{r}[\operatorname{Inf}_{i}(f_{r}) \ge \operatorname{high}] \ge \operatorname{large}\}$$

 $\cup \{i \mid \Pr_{s}[\operatorname{Inf}_{i}(g_{s}) \ge \operatorname{high}] \ge \operatorname{large}\}$

- Fact: (for our defn of influence) any function has bounded number of high influence variables.
- (By Fact + Markov) Can assume $|\text{Bad}| \leq \epsilon \cdot n$.
- Distributions on Yes and No instances:
 - No: x random sparse $\in \{0,1\}^n$; $y \leftarrow_U \{0,1\}^n$
 - Yes: Same as No on Bad coordinates.
 - On rest, y_i is more likely to be 1 if $x_i = 1$.

Completing Case 1 (contd.)

Agreement strategy for Charlie + Dana:

- Charlie: $i \in [n] \setminus \text{Bad s.t. } \text{Inf}_i(f_r) \text{ high.}$
- Dana: $j \in [n] \setminus \text{Bad s.t. Inf}_j(g_s)$ high.
- Analysis:
 - $H_{\infty}(i), H_{\infty}(j)$ large since $i, j \notin$ Bad.
 - i = j?: Case 1 assumption.

 Combined with lower bound for agreement distillation, implies Case 1 can't occur

Case 2: No common influential variable

- Key Lemma: Fix r,s; let $f = f_r$ and $g = g_s$. If ℓ small ($\approx 2^{2^k}$) and f,g distinguish Yes/No then <u>f,g have common influential variable</u>.
- Idea: Use "Invariance Principle":
 - Remarkable theorem: Mossel, O'Donnell, Oleskiewicz; Mossel++;
 - Informal form: f,g low-degree polynomials with no common influential variable ⇒ $Exp_{x,y}[f(x)g(y)] \approx Exp_{X,Y}[f(X)g(Y)]$
 - where *x*, *y* Boolean *n*-wise product dist.

and *X*, *Y* Gaussian *n*-wise product dist.

The Gaussian-IP Problem

- Suppose we can get the "perfect" invariance theorem for us ...
- Would transform:
 Sol'n for G-Sparse-IP → Sol'n for G-Gaussian-IP
 Alice, Bob get Gaussian vectors X, Y ∈ ℝⁿ
 - Yes: $\langle X, Y \rangle \ge 2^{-k}$; No: $\langle X, Y \rangle \le 0$
- Theorem: Non-sparse $X \Rightarrow CC \ge 2^k$ bits
 - Formally [Bar Yossef et al.]: Can reduce "indexing" to G-Gaussian-IP.

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$
 - where x, y Boolean n-wise product dist.
 - and X, Y Gaussian n-wise product dist
- Challenges [+ Solutions]:
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued
 - $g: \{0,1\}^n \rightarrow \{0,1\}^{\ell}$: [Truncate range to $[0,1]^{\ell}$]
 - $f: \{0,1\}^n \rightarrow [\ell]: [???, [work with \Delta(\ell)]]$

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$ (caveat $f \approx f; g \approx g$)
- Challenges
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued [Truncate]
 - Quantity of interest is not $f(x) \cdot g(y) \dots$
 - [Can express quantity of interest as inner product.]
 - ... (lots of grunge work ...)
- Get a relevant invariance principle (next)

Invariance Principle for CC

- Thm: For every convex $K_1, K_2 \subseteq [-1,1]^{\ell}$ \exists transformations T_1, T_2 s.t. if $f: \{0,1\}^n \to K_1$ and $g: \{0,1\}^n \to K_2$ have no common influential variable, then $F = T_1 f: \mathbb{R}^n \to K_1$ and $G = T_2 g: \mathbb{R}^n \to K_2$ satisfy $\operatorname{Exp}_{x,y}[\langle f(x), g(y) \rangle] \approx \operatorname{Exp}_{X,Y}[\langle F(X), G(Y) \rangle]$
 - Main differences: *f*, *g* vector-valued.
 - Functions are transformed: $f \mapsto F; g \mapsto G$
 - Range preserved exactly (K₁ = Δ(ℓ); K₂ = [0,1]^ℓ)!
 So F, G are still communication strategies!

Summarizing

- k bits of comm. with perfect sharing
 - $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight (for one-way communication)
 - Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies

Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)
- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?

Thank You!

11/3/2014

ISR in Communication: Probably@MIT

26 of 26