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Communication (Complexity)

 Recall Shannon

 What will Bob do with ݔ? 
 Often knowledge of ݔ is overkill. 
 [Yao]’s model: 

 Bob has private information ݕ. 
 Wants to know ݂ ,ݔ ݕ ∈ {0,1}.
 Can we get away with much less communication?
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ݔ ∼ ܦ {0,1 ) Hopefully (Noiseless setting)ݔ

In general, model
allows interaction. 
For this talk, only 
one way comm.
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Example:

 Parity: 
 ݔ = ଶݔଵݔ … ;ݔ ݕ = ଶݕଵݕ … ;ݕ
 ݂ ,ݔ ݕ = ∑ ݕ+ݔ) ) mod 2 ≜  ⊕ ݔ ⊕ ݕ

 Solution: 
 Alice sends ܽ =⊕ . to Bobݔ
 Bob computes ܾ =⊕ ܽ . Outputsݕ ⊕ ܾ.

 1 bit of communication!
 (No distributional assumption on ݔ!)
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Randomness in Communication

 As in many aspects of CS, randomness often 
helps find (more efficient) solutions.

 Two “Probabilistic Communication” Models:
 Private randomness: 

 Alice tosses random coins and uses that to 
determine what to send to Bob.

 Shared randomness:
 Alice and Bob share random string ݎ ∈ 0,1 ∗
 Alice’s message depends on ݎ
 Bob’s use of message depends on ݎ.

 Det. CC ≥ Private. CC ≥ Shared. CC 
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Example: Equality Testing

 ݂ ,ݔ ݕ = 1 if ݔ = ݕ and 0 o.w.
 Deterministically: Communicate Ω(݊) bits
 With private randomness: 

 Alice encodes ݔ ↦ ܧ ݔ :ܧ) ; 0,1  → 0,1 ே)
 Picks ݅ ← [ܰ]; sends ݅, ܧ ݔ  to Bob.
 Bob receives ݅, ܾ and outputs 1 if ܧ ݕ  = ܾ
 Priv. CC = ܱ(log ݊) bits

 With shared randomness: 
 Alice and Bob share ݅.
 Alice sends ܧ ݔ . 
 Shared CC = ܱ 1 bits. 
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This talk: Imperfect Sharing

 Generic motivation: 
 Where does the shared randomness come from?

 Nature/Collective experience ⇒ Noisy
 Do parties have to agree on their shares perfectly?

 Can they get away with imperfection?
 Is their a price?
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Model: Imperfectly Shared Randomness

 Alice ← ← and Bob ; ݎ ݏ where ݎ, ,ݎ i.i.d. sequence of correlated pairs = ݏ ݏ ; ݎ, ݏ ∈ {−1, +1}; ॱ ݎ = ॱ ݏ = 0; ॱ ݏݎ = ߩ ≥ 0 .
 Notation: 

 (݂)ఘݎݏ݅ = cc of ݂ with ߩ-correlated bits.
 .Perfectly Shared Randomness cc :(݂)ݎݏ
 ݒ݅ݎ ݂ : cc with PRIVate randomness

 Starting point: for Boolean functions ݂
 ݎݏ ݂ ≤ ఘݎݏ݅ ݂ ≤ ݒ݅ݎ ݂ ≤ ݎݏ ݂ + log ݊
 What if ݎݏ ݂ ≪ log ݊? E.g. ݎݏ ݂ = ܱ(1)
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Results

 Model first studied by [Bavarian et al.’14] 
(“Independently and earlier”). 
 They show ݅ݎݏ Equality = ܱ 1

 Our Results:
 Generally: ݎݏ ݂ ≤ ݇ ⇒ ݎݏ݅ ݂ ≤ 2
 Converse: ∃݂ with ݎݏ ݂ ≤ ݎݏ݅ & ݇ ݂ ≥ 2 
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Equality Testing (our proof)

 Key idea: Think inner products.
 Encode ݔ ↦ ܺ = ݕ;(ݔ)ܧ ↦ ܻ = ܧ ݕ ;ܺ, ܻ ∈ −1, +1 ே

 ݔ = ݕ ⇒  〈ܺ, ܻ〉 = ܰ
 ݔ ≠ ݕ ⇒  〈ܺ, ܻ〉 ≤ ܰ/2 

 Estimating inner products:
 Using ideas from low-distortion embeddings …
 Alice: Picks Gaussian ܩ ∈ ℝே, sends ,ܩ〉 ܺ〉
 Bob: has ܩᇱ ∼ఘ ,ܩ compares ;ܩ ܺ  with 〈ܩ′, ܻ〉
 (mod details): ఘܱ(1) bits suffice if ܩ ≈ఘ ′ܩ
 [Bavarian et al.] Alternate protocol.
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General Communication
 Idea: All communication ≤ Inner Products

 For each random string ܴ
 Alice’s message = ݅ோ ∈ 2
 Bob’s output = ோ݂(݅ோ) where ோ݂: 2 → 0,1
 W.p. ≥ ଶଷ over ܴ, ோ݂ ݅ோ is the right answer.
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General Communication
 For each random string ܴ

 Alice’s message = ݅ோ ∈ 2
 Bob’s output = ோ݂(݅ோ) where ோ݂: 2 → 0,1
 W.p. ≥ ଶଷ , ோ݂ ݅ோ is the right answer.

 Vector representation:

 ݅ோ ↦ ோݔ ∈ 0,1 ଶೖ
(unit coordinate vector)

 ோ݂ ↦ ோݕ ∈ 0,1 ଶೖ (truth table of ோ݂).
 ோ݂ ݅ோ = ,ோݔ〉 ∝ .ோ〉; Acc. Probݕ ܺ, ܻ ; ܺ = ோݔ ோ; ܻ = ோݕ ோ 
 Gaussian protocol estimates inner products of unit 

vectors to within ±߳ with ܱ ଵఢమ communication.
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Main Technical Result: Matching lower 
bound

 There exists (promise) problem ݂ s.t.
 ݎݏ ݂ ≤ ݇
 ఘݎݏ݅ ݂ ≥ exp (݇)

 The Problem:
 Gap Sparse Inner Product (G-Sparse-IP).
 Alice gets sparse ݔ ∈ 0,1 ; wt ݔ ≈ 2ି ⋅ ݊
 Bob gets ݕ ∈ 0,1 
 Promise: 〈ݔ, 〈ݕ  ≥ .9 2ି ⋅ ݊ or ݔ, ݕ ≤ .6 2ି ⋅ ݊.
 Decide which. 
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Protocol for G-Sparse-IP

 Idea: ݔ ≠ ݕ     ⇒  0 correlated with answer.
 Use (perfectly) shared randomness to find 

random index ݅ s.t. ݔ ≠ 0 .
 Shared randomness: ݅ଵ, ݅ଶ, ݅ଷ, … uniform over [݊]
 Alice → Bob: smallest index ݆ s.t. ݔೕ ≠ 0.
 Bob: Accept if ݕೕ = 1
 Expect ݆ ≈ 2; ݎݏ ≤ ݇.
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ISR lower bounds

 Challenge: Usual CC lower bounds give a 
distribution and prove lower bound against it.

 G-Sparse-IP has a low-complexity protocol for 
every input, with shared randomness.

 Thus for every distribution, there exists a 
deterministic low-complexity protocol!

 So usual method can’t work …

 Need to fix strategy first and then “tailor-make” a 
hard distribution for the strategy …
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ISR lower bound for GSIP: Overview

 Strategies: Alice ݂ ݔ ∈ ℓ ; Bob ݃௦ ݕ ∈ 0,1 ℓ;
 Two possibilities:

 Case 1: Alice’s strategy and Bob’s strategy 
have common highly “influential coordinate”:

 (݅ s.t. flipping ݔ changes Alice’s message etc.)
 Leads to protocol for “agreement distillation” [We prove 

this is impossible.]
 Case 2: Strategies have no common influential 

variable:
 Invariance Principle ⇒ Solves some Gaussian problem
 High complexity lower bound for Gaussian problem. 

(Details shortly)
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Case 1: Agreement Distillation

 Problem: Charlie ← ← Dana ;ݎ ,ݎ ;ݏ ݏ correlated-ߩ 
 Goal: Charlie outputs ݑ; Dana outputs ܪ  ;ݒஶ ݑ , ஶܪ ݒ ≥ ;ݐ                Pr ݑ = ݒ ≥ ߛ
 Lemma: With zero communication ߛ = 2ିஐ(௧);
 Proof: “Small-set expansion of noisy hypercube” 

 Well-known by now … application of Bonami’s lemma.
 See, e.g., [Analysis of Boolean functions, O’Donnell]

 Corollary: For ܿ bits of communication, ܿ ≥ ߳ ⋅ ݐ + log  ߛ
11/3/2014 ISR in Communication: Probably@MIT 16
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Completing Case 1

 Bad ≜ ݅  Pr Inf ݂ ≥ high ≥ large}∪ ݅  Pr௦ Inf ݃௦ ≥ high ≥ large}
 Fact: (for our defn of influence) any function has 

bounded number of high influence variables.
 (By Fact + Markov) Can assume Bad ≤ ߳ ⋅ ݊.
 Distributions on Yes and No instances:

 No: ݔ random sparse ∈ {0,1} ; ݕ ← 0,1  
 Yes: Same as No on Bad coordinates. 

 On rest, ݕ is more likely to be 1 if ݔ = 1. 
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Completing Case 1 (contd.)

 Agreement strategy for Charlie + Dana: 
 Charlie: ݅ ∈ ݊ ∖ Bad s.t. Inf( ݂) high.
 Dana: ݆ ∈ ݊ ∖ Bad s.t. Inf(݃௦) high.

 Analysis: 
 ஶܪ ݅ , (݆)ஶܪ large since ݅, ݆ ∉ Bad.
 ݅ = ݆?: Case 1 assumption.

 Combined with lower bound for agreement 
distillation, implies Case 1 can’t occur
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Case 2: No common influential variable

 Key Lemma: Fix ݎ, ݂ let ;ݏ = ݂ and ݃ = ݃௦. 
If ℓ small (≈ 2ଶೖ) and ݂, ݃ distinguish Yes/No
then ݂, ݃ have common influential variable.

 Idea: Use “Invariance Principle”:
 Remarkable theorem: Mossel, O’Donnell, 

Oleskiewicz; Mossel++;
 Informal form: f,g low-degree polynomials 

with no common influential variable ⇒Exp௫,௬ ݂ ݔ ݃ ݕ ≈ Exp,[݂(ܺ)݃(ܻ)] 
 where ݔ, ݕ Boolean ݊-wise product dist.
 and ܺ, ܻ Gaussian ݊-wise product dist.
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The Gaussian-IP Problem

 Suppose we can get the “perfect” invariance 
theorem for us …

 Would transform: 
Sol’n for G-Sparse-IP → Sol’n for G-Gaussian-IP 
 Alice, Bob get Gaussian vectors ܺ, ܻ ∈ ℝ
 Yes: 〈ܺ, ܻ〉  ≥ 2ି ; No: 〈ܺ, ܻ〉  ≤ 0

 Theorem: Non-sparse ܺ ܥܥ  ⇒ ≥ 2 bits
 Formally [Bar Yossef et al.]: Can reduce 

“indexing” to G-Gaussian-IP.
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Invariance Principle + Challenges

 Informal Invariance Principle: ݂, ݃ low-degree 
polynomials with no common influential variable ⇒ Exp௫,௬ ݂ ݔ ݃ ݕ ≈ Exp,[݂(ܺ)݃(ܻ)] 
 where ݔ, ݕ Boolean ݊-wise product dist.
 and ܺ, ܻ Gaussian ݊-wise product dist

 Challenges [+ Solutions]:
 Our functions not low-degree [Smoothening]
 Our functions not real-valued

 ݃: 0,1  → 0,1 ℓ: [Truncate range to 0,1 ℓ]
 ݂: 0,1  → ℓ : [???, [work with Δ ℓ ]]
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Invariance Principle + Challenges

 Informal Invariance Principle: ݂, ݃ low-degree 
polynomials with no common influential variable ⇒ Exp௫,௬ ݂ ݔ ݃ ݕ ≈ Exp,[݂(ܺ)݃(ܻ)] (caveat  ݂ ≈ ݂; ݃ ≈ ݃)

 Challenges
 Our functions not low-degree [Smoothening]
 Our functions not real-valued [Truncate]
 Quantity of interest is not ݂ ݔ ⋅ ݃ ݕ …

 [Can express quantity of interest as inner 
product. ]

 … (lots of grunge work …)
 Get a relevant invariance principle (next)
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Invariance Principle for CC

 Thm: For every convex ܭଵ, ଶܭ ⊆ −1,1 ℓ∃ transformations ଵܶ, ଶܶ s.t.
if ݂: 0,1  → ଵܭ and ݃: 0,1  → ଶܭ
have no common influential variable, then             ܨ = ଵ݂ܶ: ℝ → ଵܭ and ܩ = ଶܶ݃: ℝ → ଶܭ satisfyExp௫,௬ 〈݂ ݔ , ݃ ݕ 〉 ≈  Exp, ܨ〉 ܺ , ܩ ܻ 〉
 Main differences: ݂, ݃ vector-valued.
 Functions are transformed: ݂ ↦ ;ܨ ݃ ↦ ܩ
 Range preserved exactly (ܭଵ = Δ ℓ ; ଶܭ =  0,1 ℓ)!

 So ܨ, ܩ are still communication strategies!
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Summarizing

 ݇ bits of comm. with perfect sharing→ 2 bits with imperfect sharing.
 This is tight (for one-way communication)

 Invariance principle for communication
 Agreement distillation
 Low-influence strategies
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Conclusions

 Imperfect agreement of context important.
 Dealing with new layer of  uncertainty.
 Notion of scale (context LARGE)

 Many open directions+questions:
 Imperfectly shared randomness:

 One-sided error?
 Does interaction ever help?
 How much randomness?
 More general forms of correlation?
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Thank You!
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