Imperfectly Shared Randomness in Communication

Madhu Sudan Microsoft Research

Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka (?).

09/18/2014

MSRIndia: Imperfectly Shared Randomness in CC

Dedicate to our SVC colleagues!

You are the best!

09/18/2014

MSRIndia: Imperfectly Shared Randomness in CC

Context in Communication

- Context = Central element of Communication.
 - Shared between sender and receiver
 - Implicit. (Doesn't participate in n)
- Examples:
 - Meaning of bits (what action to take given rec'd message).
 - Shannon theory: Distribution of source, Channel behavior, Codes used.
 - Communication Complexity: Function being computed, Randomness being shared etc.
 - Human communication: Language, Grammar ...

Uncertainty in sharing of context

- Whenever "large" amounts on information is "shared", there must be some imperfection.
 - Online Forms: Example my bank:
 - "Please enter your PIN now"
 - But I have an ATM PIN, a phone PIN, a transaction PIN.
 - Compression: Do sender and receiver agree perfectly on the prior? [Juba,Kalai,Khanna,S.'11], [Haramaty,S.'14]
 - This talk: Shared Randomness in Communication Complexity.

Shared Randomness in CC

Canonical example: Equality testing.

- Alice has $x \in \{0,1\}^n$; Bob has $y \in \{0,1\}^n$;
- Want to know if x = y?
- Deterministically: Communicate $\Omega(n)$ bits
- With private randomness: $\Theta(\log n)$ bits
 - Idea: Alice encodes $x \mapsto E(x)$; Picks $i \in [N]$; sends $(i, E(x)_i)$
- With shared randomness: *O*(1) bits
 - Just send $E(x)_i$
- Upshot: Randomness very helpful!

Compression with Uncertain Priors

- [JKKS'11]:
- Alice has $P = (P_1, \dots, P_N); m \leftarrow_P [N];$
- Bob has $Q = (Q_1, ..., Q_N); P \approx_{\Delta} Q;$
- Both want to know *m*.
- State of affairs:
 - P = Q: Expected comm. = H(P). [Huffman]
 - $P \approx_{\Delta} Q$ + shared randomness: $H(P) + 2\Delta$ [JKKS]
 - $P \approx_{\Delta} Q$ deterministically: $O(H(P) + \Delta + \log \log N)$ [Haramaty+S.]

Uncertain Compression (thoughts)

Is entropy the right measure of compressibility?

- With uncertainty?
 - Deterministically ... may be not (the loglog n)
 - Randomized: Perfect sharing inconsistent with uncertainty!
 - Unless ... randomness is shared imperfectly!
- Motivates: Imperfectly shared randomness in CC.
- "Independently" raised and studied by [Bavarian,Gaminsky,Ito'14].

Our Model

- General communication complexity with imperfectly shared randomness.
- Alice $\leftarrow r$; and Bob $\leftarrow s$ where (r, s) = i.i.d. sequence of correlated pairs $(r_i, s_i)_i$; $r_i, s_i \in \{-1, +1\}; E[r_i] = E[s_i] = 0; E[r_i s_i] = \rho$.
- Notation:
 - $isr_{\rho}(f) = cc of f$ with ρ -correlated bits.
 - psr(f): perfectly shared randomness cc.
 - priv(f): cc with private randomness
- Starting point: for Boolean functions f
 - $psr(f) \le isr_{\rho}(f) \le priv(f) \le psr(f) + \log n$

Results

- [Bavarian et al.]: Focus on simultaneous message model; more general correlations.
- Our focus:
 - One-way communication: Alice → Bob; Bob outputs f.
 - Problems where difference of log n significant.
- Results:
 - Uncertain Compression: $O_{\rho}(H(P) + \Delta)$
 - Equality testing: $O_{\rho}(1)$ (also [Bavarian et al.])
 - More generally: $psr(f) \le k \Rightarrow ow \text{-} isr(f) \le 2^k$
 - Converse: $\exists f \text{ with } ow psr(f) \le k \& ow isr(f) \ge 2^k$

Rest of the talk

- Uncertain Compression: $O_{\rho}(H(P) + \Delta)$
- Equality testing: $O_{\rho}(1)$ (also [Bavarian et al.])
- General upper bound: $psr(f) \le k \Rightarrow ow-isr(f) \le 2^k$
- Converse: $\exists f \text{ with } ow-psr(f) \leq k \& ow-isr(f) \geq 2^k$

Compression:

- [JKKS] *psr* solution: Let common randomness define "dictionary": arbitrarily long sequences r_m for every message m.
 - Alice sends "long enough" prefix of r_m
 - Bob does maximum likelihood decoding based on Q.
 - Analysis: Exercise
- Our *isr* solution:
 - Alice send longer prefix.
 - Bob does max. likelihood decoding among messages that are close enough to rec'd word.
- Moral: Protocols "natural" ⇒ Explains behavior?

Rest of the talk

- Uncertain Compression: $O_{\rho}(H(P) + \Delta)$
- Equality testing: $O_{\rho}(1)$ (also [Bavarian et al.])
- General upper bound: $psr(f) \le k \Rightarrow ow-isr(f) \le 2^k$
- Converse: $\exists f \text{ with } ow-psr(f) \leq k \& ow-isr(f) \geq 2^k$

Equality Testing

Key idea: Think inner products.

• Encode $x \mapsto X = E(x)$; $y \mapsto Y = E(y)$; $X, Y \in \{-1, +1\}^n$

•
$$x = y \Rightarrow \langle X, Y \rangle = n$$

$$\bullet x \neq y \Rightarrow \langle X, Y \rangle \leq n/2$$

- Estimating inner products:
 - Using ideas from low-distortion embeddings ...
 - Alice: Picks Gaussian $G \in \mathbb{R}^n$, sends $\langle G, X \rangle$
 - Bob: compares $\langle G, X \rangle$ with $\langle G', Y \rangle$
 - (mod analysis): $O_{\rho}(1)$ bits suffice if $G \approx_{\rho} G'$
 - Bavarian et al.] Alternate protocol.

Rest of the talk

- Uncertain Compression: $O_{\rho}(H(P) + \Delta)$
- Equality testing: $O_{\rho}(1)$ (also [Bavarian et al.])
- General upper bound: $psr(f) \le k \Rightarrow ow isr(f) \le 2^k$
- Converse: $\exists f \text{ with } ow-psr(f) \leq k \& ow-isr(f) \geq 2^k$

General Communication

- Idea: All communication \leq Inner Products
- Example: One-way communication k bits:
 - For each random string R
 - Alice's message = $i_R \in [2^k]$
 - Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$ over R, $f_R(i_R)$ is the right answer.

General Communication

- For each random string R
 - Alice's message = $i_R \in [2^k]$
 - Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.
- Vector representation:
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).

 $\bullet f_R(i_R) = \langle x_R, y_R \rangle$

Gaussian protocol estimates inner products to within relative error ϵ with $O\left(\frac{1}{\epsilon^2}\right)$ communication.

Rest of the talk

- Uncertain Compression: $O_{\rho}(H(P) + \Delta)$
- Equality testing: $O_{\rho}(1)$ (also [Bavarian et al.])
- General upper bound: $psr(f) \le k \Rightarrow ow-isr(f) \le 2^k$
- Converse: $\exists f \text{ with } ow-psr(f) \le k \& ow-isr(f) \ge 2^k$

Main Technical Result: Matching lower bound

There exists promise problem f s.t.

- $ow-psr(f) \le k$
- ow- $isr_{\rho}(f) \ge \exp(k)$
- The Problem:
 - Gap Sparse Inner Product (G-Sparse-IP).
 - Alice gets sparse $x \in \{0,1\}^n$; wt(x) $\approx 2^{-k} \cdot n$
 - Bob gets $y \in \{-1, +1\}^n$
 - Promise: $\langle x, y \rangle \ge \left(\frac{1}{3}\right) 2^{-k} \cdot n \text{ or } \langle x, y \rangle \le 0.$
 - Decide which.

psr Protocol for G-Sparse-IP

- Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.
- Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.
- Shared randomness: i_1, i_2, i_3, \dots uniform over [n]
- Alice \rightarrow Bob: smallest index *j* s.t. $x_{i_j} \neq 0$.
- Bob: Accept if $y_{i_j} = 1$
- Expect $j \approx 2^k$; $psr \leq k$.

ISR lower bounds

- Challenge: Usual CC lower bounds give a distribution and prove lower bound against it.
- G-Sparse-IP has a low-complexity protocol for every input, with shared randomness.
- Thus for every distribution, there exists a deterministic low-complexity protocol!
- So usual method can't work ...

 Need to fix strategy first and then "tailor-make" a hard distribution for the strategy ...

ISR lower bound for GSIP: Overview

- Strategies: Alice $f_r(x) \in [\ell]$; Bob $g_s(y) \in \{0,1\}^{\ell}$;
- Two possibilities:
 - Case 1: Alice's strategy and Bob's strategy have common highly "influential coordinate":
 - (*i* s.t. flipping *x*_{*i*} changes Alice's message etc.)
 - Leads to protocol for "agreement distillation" [We prove this is impossible.]
 - Case 2: Strategies have no common influential variable:
 - Invariance Principle ⇒ Solves some Gaussian problem
 - Lower bound for Gaussian problem. (Details shortly)

Case 1: Agreement Distillation

- Problem: Charlie $\leftarrow r$; Dana $\leftarrow s$; $(r,s) \rho$ -correlated
- Goal: Charlie outputs u; Dana outputs v;

 $H_{\infty}(u), H_{\infty}(v) \ge k;$ $\Pr[u = v] \ge \gamma$

- Lemma: With zero communication $\gamma = 2^{-\Omega(k)}$;
- Proof: "Small-set expansion of noisy hypercube"
 - See, e.g., [Analysis of Boolean functions, O'Donnell]
- Corollary: For *c* bits of communication, $c \ge \epsilon \cdot k + \log \gamma$

Completing Case 1

■ Bad
$$\triangleq \{i \mid \Pr_{r}[\operatorname{Inf}_{i}(f_{r}) \ge \operatorname{high}] \ge \operatorname{large}\}$$

 $\cup \{i \mid \Pr_{s}[\operatorname{Inf}_{i}(g_{s}) \ge \operatorname{high}] \ge \operatorname{large}\}$

- Fact: (for our defn of influence) any function has bounded number of high influence variables.
- (By Fact + Markov) Can assume $|\text{Bad}| \leq \epsilon \cdot n$.
- Distributions on Yes and No instances:
 - No: x random sparse $\in \{0,1\}^n$; $y \leftarrow_U \{-1,1\}^n$
 - Yes: Same as No on Bad coordinates.
 - On rest, y_i is more likely to be +1 if $x_i = 1$.

Completing Case 1 (contd.)

- Agreement strategy for Charlie + Dana:
 - Charlie: $i \in [n]$ Bad s.t. $Inf_i(f_r)$ high.
 - Dana: $j \in [n]$ Bad s.t. $\text{Inf}_j(g_s)$ high.
- Analysis:
 - $H_{\infty}(i), H_{\infty}(j)$ large since $i, j \notin$ Bad.
 - i = j?: Case 1 assumption.

 Combined with lower bound for agreement distillation, implies Case 1 can't occur

Case 2: No common influential variable

- Key Lemma: Fix r,s; let $f = f_r$ and $g = g_s$. If ℓ small (2^{2^k}) and f,g distinguish Yes/No then f,g have common influential variable.
- Idea: Use "Invariance Principle":
 - Remarkable theorem: Mossel, O'Donnell, Oleskiewicz; Mossel++;
 - Informal form: f,g low-degree polynomials with no common influential variable ⇒ $Exp_{x,y}[f(x)g(y)] \approx Exp_{X,Y}[f(X)g(Y)]$
 - where *x*, *y* Boolean *n*-wise product dist.

and X, Y Gaussian n-wise product dist.

The Gaussian-IP Problem

- Suppose we can get the "perfect" invariance theorem for us ...
- Would transform:
 Sol'n for G-Sparse-IP → Sol'n for G-Gaussian-IP
 Alice, Bob get Gaussian vectors X, Y ∈ ℝⁿ
 - Yes: $\langle X, Y \rangle \ge 2^{-k}$; No: $\langle X, Y \rangle \le 0$
- Hope: Non-sparse $\Rightarrow \geq 2^k$ communication
 - Formally [Bar Yossef et al.]: Can reduce "indexing" to G-Gaussian-IP.

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$
 - where x, y Boolean n-wise product dist.
 - and X, Y Gaussian n-wise product dist
- Challenges [+ Solutions]:
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued
 - $g: \{-1,1\}^n \rightarrow \{0,1\}^{\ell}$: [Truncate range to $[0,1]^{\ell}$]
 - $f: \{0,1\}^n \rightarrow [\ell]: [???, [work with \Delta(\ell)]]$

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$
- Challenges
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued [Truncate]
 - Quantity of interest is not $f(x) \cdot g(y) \dots$
 - [Can express quantity of interest as inner product.]
 - ... (lots of grunge work ...)
- Get a relevant invariance principle (next)

Invariance Principle for (one-way) CC

- Thm: \exists transformations T_1, T_2 s.t. if $f: \{0,1\}^n \to \Delta(\ell)$ and $g: \{-1,1\}^n \to [0,1]^\ell$ have no common influential variable, then $F = T_1 f: \mathbb{R}^n \to \Delta(\ell)$ and $G = T_2 g: \mathbb{R}^n \to [0,1]^\ell$ satisfy $\operatorname{Exp}_{x,y}[\langle f(x), g(y) \rangle] \approx \operatorname{Exp}_{X,Y}[\langle F(X), G(Y) \rangle]$
 - Main differences: *f*, *g* vector-valued.
 - Functions are transformed: $f \mapsto F; g \mapsto G$
 - Range is preserved exactly (Δ(ℓ); [0,1]^ℓ)!
 So F, G are still communication strategies!

Summarizing

- k bits of comm. with perfect sharing
 - $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight (for one-way communication)
 - Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies

Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)
- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?

Thank You!

09/18/2014

MSRIndia: Imperfectly Shared Randomness in CC

32 of 32